Tamil Nadu Board of Secondary EducationSSLC (English Medium) Class 10th
Advertisement Remove all ads

Given that A = [135-1], B = [1-12352], C = [132-413] verify that A(B + C) = AB + AC - Mathematics

Sum

Given that A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]`, C = `[(1, 3, 2),(-4, 1, 3)]` verify that A(B + C) = AB + AC

Advertisement Remove all ads

Solution

Given A = `[(1, 3),(5, -1)]`, B = `[(1, -1, 2),(3, 5, 2)]` C = `[(1, 3, 2),(-4, 1, 3)]`

B + C = `[(1, -1, 2),(3, 5, 2)] + [(1, 3, 2),(-4, 1, 3)]`

= `[(2, 2, 4),(-1, 6, 5)]`

A(B + C) = `[(1, 3),(5, -1)] xx [(2, 2, 4),(-1, 6, 5)]`

= `[(2 - 3, 2 + 18, 4 + 15),(10 + 1, 10 - 6, 20 - 5)]`

= `[(-1, 20, 19),(11, 4, 15)]`   ...(1)

AB = `[(1, 3),(5, -1)] xx [(1, -1, 2),(3, 5, 2)]`

= `[(1 + 9, -1 + 15, 2 + 6),(5 - 3, -5 - 5, 10 - 2)]`

= `[(10, 14, 8),(2, -10, 8)]`

AC = `[(1, 3),(5, -1)] xx [(1, 3, 2),(-4, 1, 3)]`

= `[(1 - 12, 3 + 3, 2 + 9),(5 + 4, 15 - 1, 10 - 3)]`

= `[(-11, 6, 11),(9, 14, 7)]`

AB + AC = `[(10, 14, 8),(2, -10, 8)] + [(-11, 6, 11),(9, 14, 7)]`

= `[(-1, 20, 19),(11, 4, 15)]`   ...(2)

From (1) and (2) we get

A(B + C) = AB + AC

Concept: Matrices
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Samacheer Kalvi Mathematics Class 10 SSLC Tamil Nadu State Board
Chapter 3 Algebra
Exercise 3.19 | Q 5 | Page 153
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×