ICSE Class 10CISCE
Share
Notifications

View all notifications

Given Four Quantities P, Q, R and S Are in Proportion, Show that Q2(P-r):Rs(Q-s)=(P2-q2-pq): ( R2-s2-rs). - ICSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

Given four quantities p, q, r and s are in proportion, show that 
q2(p - r) : rs (q - s) =(p2- q2- pq): ( r2-s2-rs). 

Solution

p, q, r and s are 1n proportion 

then, p : q :: r : s 

Let `"p"/"q" = "r"/"s" = "k"`

Then p = kq and r =ks 

Now, we have to prove that

`(("p" - "r")"q"^2)/(("q - s")"rs") = ("p"^2 - "q"^2 - "pq")/("r"^2 - "s"^2 - "rs")`

LHS

`= (("p" - "r")"q"^2)/(("q - s")"rs")`

`= (("kq" - "ks")"q"^2)/(("q - s")"ks" xx "s")`

`= ("k"("q - s")"q"^2)/("ks"^2 ("q - s"))`

`= "q"^2/"s"^2`

RHS

`= ("p"^2 - "q"^2 - "pq")/("r"^2 - "s"^2 - "rs")`

`= ("k"^2"q"^2 - "q"^2 - "kq" xx "q")/("k"^2"s"^2 - "s"^2 - "ks" xx "s")`

`= ("q"^2("k"^2 - 1 - "k"))/("s"^2("k"^2 - 1 - "k"))`

`= "q"^2/"s"^2`

LHS = RHS

  Is there an error in this question or solution?

APPEARS IN

 Frank Solution for Frank Class 10 Mathematics Part 2 (2016 to Current)
Chapter 9: Ratio and Proportion
Exercise 9.2 | Q: 10

Video TutorialsVIEW ALL [1]

Solution Given Four Quantities P, Q, R and S Are in Proportion, Show that Q2(P-r):Rs(Q-s)=(P2-q2-pq): ( R2-s2-rs). Concept: Proportions.
S
View in app×