Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm
deg p(x) = deg q(x)
Solution
According to the division algorithm, if p(x) and g(x) are two polynomials with g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that p(x) = g(x) × q(x) + r(x),
where r(x) = 0 or degree of r(x) < degree of g(x)
Degree of a polynomial is the highest power of the variable in the polynomial
deg p(x) = deg q(x)
Degree of quotient will be equal to degree of dividend when divisor is constant ( i.e., when any polynomial is divided by a constant).
Let us assume the division of 6x2 + 2x + 2 by 2.
Here, p(x) = 6x2 + 2x + 2
g(x) = 2
q(x) = 3x2 + x + 1 and r(x) = 0
Degree of p(x) and q(x) is the same i.e., 2.
Checking for division algorithm,
p(x) = g(x) × q(x) + r(x)
6x2 + 2x + 2 = 2(3x2 + x + 1)
= 6x2 + 2x + 2
Thus, the division algorithm is satisfied.