Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm deg p(x) = deg q(x) - Mathematics

Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm

deg p(x) = deg q(x)

Solution

According to the division algorithm, if p(x) and g(x) are two polynomials with g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that p(x) = g(x) × q(x) + r(x),

where r(x) = 0 or degree of r(x) < degree of g(x)

Degree of a polynomial is the highest power of the variable in the polynomial

deg p(x) = deg q(x)

Degree of quotient will be equal to degree of dividend when divisor is constant ( i.e., when any polynomial is divided by a constant).

Let us assume the division of 6x2 + 2x + 2 by 2.

Here, p(x) = 6x2 + 2x + 2

g(x) = 2

q(x) = 3x2 + x + 1 and r(x) = 0

Degree of p(x) and q(x) is the same i.e., 2.

Checking for division algorithm,

p(x) = g(x) × q(x) + r(x)

6x2 + 2x + 2 = 2(3x2 + x + 1)

= 6x2 + 2x + 2

Thus, the division algorithm is satisfied.

Concept: Division Algorithm for Polynomials
Is there an error in this question or solution?
Chapter 2: Polynomials - Exercise 2.3 [Page 36]

APPEARS IN

NCERT Class 10 Maths
Chapter 2 Polynomials
Exercise 2.3 | Q 5.1 | Page 36

Share