Advertisement Remove all ads

Give an Example of a Statement P(N) Which is True for All N ≥ 4 but P(1), P(2) and P(3) Are Not True. Justify Your Answer. - Mathematics

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.

Advertisement Remove all ads

Solution

Let P(n) be the statement 3n < n!.

For n = 1,

3n = 3 × 1 = 3

n! = 1! = 1

Now, 3 > 1

So, P(1) is not true.

For n = 2,

3n = 3 × 2 = 6

n! = 2! = 2

Now, 6 > 2

So, P(2) is not true.

For n = 3,

3n = 3 × 3 = 9

n! = 3! = 6

Now, 9 > 6

So, P(3) is not true.

For n = 4,

3n = 3 × 4 = 12

n! = 4! = 24

Now, 12 < 24

So, P(4) is true.

For n = 5,

3n = 3 × 5 = 15

n! = 5! = 120

Now, 15 < 120

So, P(5) is true.

Similarly, it can be verified that 3n < n! for n = 6, 7, 8, ... .
Thus, the statement P(n) : 3n < n! is true for all n ≥ 4 but P(1), P(2) and P(3) are not true.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 12 Mathematical Induction
Exercise 12.1 | Q 7 | Page 3
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×