HSC Arts 12th Board ExamMaharashtra State Board
Share

# If y = P eax + Q ebx, show that dy/dx^2=(a+b)dy/dx + aby=0 - HSC Arts 12th Board Exam - Mathematics and Statistics

ConceptGeneral and Particular Solutions of a Differential Equation

#### Question

If y = P eax + Q ebx, show that

(d^y)/(dx^2)=(a+b)dy/dx+aby=0

#### Solution

y = P eax + Q ebx

Differentiating w.r.t x, we get:

dy/dx=Pae^(ax)+Qbe^(bx)..................(1)

(a+b)dy/dx=(a+b)(Pae^(ax)+Qbe^(bx))

(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+ab(Pe^(ax)+Qe^(bx))

(a+b)dy/dx=Pa^2e^(ax)+Qb^2e^(bx)+aby

-[-(a+b)dy/dx+aby]=Pa^2e^(ax)+Qb^2e^(bx)........(2)

Differentiating (1) w.r.t. x, we get:

(d^y)/(dx^2)=Pa^2e^(ax)+Qb^2e^(bx)................(3)

Subtracting (2) from (3), we get:

(d^y)/(dx^2)-(a+b)dy/dx+aby=Pa^2e^(ax)+Qb^2e^(bx)-Pa^2e^(ax)-Qb^2e^(bx)

(d^y)/(dx^2)-(a+b)dy/dx+aby=0

Hence proved.

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [2]

Solution If y = P eax + Q ebx, show that dy/dx^2=(a+b)dy/dx + aby=0 Concept: General and Particular Solutions of a Differential Equation.
S