Share

Books Shortlist

# Find the particular solution of the differential equation (1 – y^2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1. - CBSE (Science) Class 12 - Mathematics

ConceptGeneral and Particular Solutions of a Differential Equation

#### Question

Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.

#### Solution

Given:

(1y2)(1+logx)dx+2xydy=0

(1y2)(1+logx)dx=2xydy

=>((1+logx)/(2x))dx=-(y/(1-y^2))dy" ......(1)"

Let:

1+logx=and

(1y2)=p

=>1/xdx=dt " and " −2ydy=dp

Therefore, (1) becomes

intt/2dt=int1/(2p)dp

=>t^2/4=logp/2+C "......(2)"

Substituting the values of t and p in (2), we get

((1+logx^2))/4=log(1-y^2)/2+C " ......3"

At x=1 and y=0, (3) becomes

C= 1/4

Substituting the value of C in (3), we get

(1+logx^2)/4=log(1-y^2)/2+1/4

(1+logx2)=2log(1y2)+1

Or

(logx2)+logx2=log(1y2)2

It is the required particular solution

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL 

Solution Find the particular solution of the differential equation (1 – y^2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1. Concept: General and Particular Solutions of a Differential Equation.
S