CBSE (Science) Class 11CBSE
Share

Books Shortlist
Your shortlist is empty

# Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (V) G F - CBSE (Science) Class 11 - Mathematics

#### Question

Let f and g be two real functions defined by $f\left( x \right) = \sqrt{x + 1}$ and $g\left( x \right) = \sqrt{9 - x^2}$ . Then, describe function:

(v) $\frac{g}{f}$

#### Solution

Given:

$f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}$

Clearly,

$f\left( x \right) = \sqrt{x + 1}$  is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,

$g\left( x \right) = \sqrt{9 - x^2}$   is defined for  9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
$x \in \left[ - 3, 3 \right]$
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3]    = [ -1, 3]
(v) $\frac{g}{f}: \left[ - 1, 3 \right] \to R \text{ is given by} \left( \frac{g}{f} \right)\left( x \right) = \frac{g\left( x \right)}{f\left( x \right)} = \frac{\sqrt{9 - x^2}}{\sqrt{x + 1}} = \sqrt{\frac{9 - x^2}{x + 1}}$.

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Solution for Mathematics Class 11 (2019 to Current)
Chapter 3: Functions
Ex.3.40 | Q: 4.5 | Page no. 38
Solution Let F and G Be Two Real Functions Defined by F ( X ) = √ X + 1 and G ( X ) = √ 9 − X 2 . Then, Describe Function: (V) G F Concept: Functions.
S