From a point O in the interior of a ∆ABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively - Mathematics

Advertisements
Advertisements
Sum

From a point O in the interior of a ∆ABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove
that :

`(i) AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 – OD^2 – OE^2 – OF^2`

`(ii) AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2`

Advertisements

Solution

Let O be a point in the interior of ∆ABC and let OD ⊥ BC, OE ⊥ CA and OF ⊥ AB.

(i) In right triangles ∆OFA, ∆ODB and ∆OEC, we have

`OA^2 = AF^2 + OF^2`

`OB^2 = BD^2 + OD^2`

and,

`OC^2 = CE^2 + OE^2`

Adding all these results, we get

`OA^2 + OB^2 + OC^2 = AF^2 + BD^2 + CE^2 + OF^2 + OD^2 + OE^2`

`⇒ AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 – OD^2 – OE^2 – OF^2`

(ii) In right triangles ∆ODB and ∆ODC, we have

`OB^2 = OD^2 + BD^2`

and, `OC^2 = OD^2 + CD^2`

`OB^2 – OC^2 = (OD^2 + BD^2 ) – (OD^2 + CD^2 )`

`⇒ OB^2 – OC^2 = BD^2 – CD^2 ….(i)`

Similarly, we have

`OC^2 – OA^2 = CE^2 – AE^2 ….(ii)`

and, `OA^2 – OB^2 = AF^2 – BF^2 ….(iii)`

Adding (i), (ii) and (iii), we get

`(OB^2 – OC^2 ) + (OC^2 – OA^2 ) + (OA^2 – OB^2 )`

`= (BD^2 – CD^2 ) + (CE^2 – AE^2 ) + (AF^2 – BF^2 )`

`⇒ (BD^2 + CE^2 + AF^2 ) – (AE^2 + CD^2 + BF^2 ) = 0`

`⇒ AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2`

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sides of a triangle are 6 cm, 8 cm and 10 cm, respectively, then determine whether the triangle is a right angle triangle or not.


Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 7 cm, 24 cm, 25 cm

 


A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?


The perpendicular from A on side BC of a Δ ABC intersects BC at D such that DB = 3CD . Prove that 2AB2 = 2AC2 + BC2.


In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.


In the given figure, ABC is a triangle in which ∠ABC < 90° and AD ⊥ BC. Prove that AC2 = AB2 + BC2 − 2BC.BD.


Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, ho much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?


A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.


A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.


Which of the following can be the sides of a right triangle?

2 cm, 2 cm, 5 cm

In the case of right-angled triangles, identify the right angles.


Identify, with reason, if the following is a Pythagorean triplet.
(3, 5, 4)


Identify, with reason, if the following is a Pythagorean triplet.
(4, 9, 12)


Identify, with reason, if the following is a Pythagorean triplet.
(11, 60, 61)


In the given figure, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ= 4PM– 3PR2.


In ∆PQR, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.


In ∆ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.


Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was \[15\sqrt{2}\]

 km. Find their speed per hour.

 


In ∆ABC, seg AD ⊥ seg BC, DB = 3CD.

Prove that: 2AB= 2AC+ BC2


In a trapezium ABCD, seg AB || seg DC seg BD ⊥ seg AD, seg AC ⊥ seg BC, If AD = 15, BC = 15 and AB = 25. Find A(▢ABCD)


In ΔMNP, ∠MNP = 90˚, seg NQ ⊥ seg MP, MQ = 9, QP = 4, find NQ.


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


AD is drawn perpendicular to base BC of an equilateral triangle ABC. Given BC = 10 cm, find the length of AD, correct to 1 place of decimal.


In an isosceles triangle ABC; AB = AC and D is the point on BC produced.
Prove that: AD2 = AC2 + BD.CD.


In figure AB = BC and AD is perpendicular to CD.
Prove that: AC2 = 2BC. DC.


Diagonals of rhombus ABCD intersect each other at point O.

Prove that: OA2 + OC2 = 2AD2 - `"BD"^2/2`


In the following figure, OP, OQ, and OR are drawn perpendiculars to the sides BC, CA and AB respectively of triangle ABC.

Prove that: AR2 + BP2 + CQ2 = AQ2 + CP2 + BR2


In triangle ABC, ∠B = 90o and D is the mid-point of BC.
Prove that: AC2 = AD2 + 3CD2.


In the following Figure ∠ACB= 90° and CD ⊥ AB, prove that  CD2  = BD × AD


Choose the correct alternative: 

In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure of ∠P? 


Find the length of diagonal of the square whose side is 8 cm.


Find the side of the square whose diagonal is `16sqrt(2)` cm.


In Fig. 3, ∠ACB = 90° and CD ⊥ AB, prove that CD2 = BD x AD.


Triangle ABC is right-angled at vertex A. Calculate the length of BC, if AB = 18 cm and AC = 24 cm.


In the given figure, angle BAC = 90°, AC = 400 m, and AB = 300 m. Find the length of BC.


In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:
(i) CP
(ii) PD
(iii) CD


In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm


In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm


In the given figure, angle ADB = 90°, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.


In the given figure, AD = 13 cm, BC = 12 cm, AB = 3 cm and angle ACD = angle ABC = 90°. Find the length of DC.


A ladder, 6.5 m long, rests against a vertical wall. If the foot of the ladder is 2.5 m from the foot of the wall, find up to how much height does the ladder reach?


A boy first goes 5 m due north and then 12 m due east. Find the distance between the initial and the final position of the boy.


Use the information given in the figure to find the length AD.


In the figure below, find the value of 'x'.


In the figure below, find the value of 'x'.


The top of a ladder of length 15 m reaches a window 9 m above the ground. What is the distance between the base of the wall and that of the ladder?


Find the Pythagorean triplet from among the following set of numbers.

2, 4, 5


Find the Pythagorean triplet from among the following set of numbers.

4, 5, 6


Find the Pythagorean triplet from among the following set of numbers.

2, 6, 7


Find the Pythagorean triplet from among the following set of numbers.

9, 40, 41


Find the Pythagorean triplet from among the following set of numbers.

4, 7, 8


The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 12, 15


The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7


Find the length of the hypotenuse of a triangle whose other two sides are 24cm and 7cm.


Calculate the area of a right-angled triangle whose hypotenuse is 65cm and one side is 16cm.


Two poles of height 9m and 14m stand on a plane ground. If the distance between their 12m, find the distance between their tops.


The length of the diagonals of rhombus are 24cm and 10cm. Find each side of the rhombus.


In ΔABC, AD is perpendicular to BC. Prove that: AB2 + CD2 = AC2 + BD2


In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9 AD2 = 7 AB2.


From a point O in the interior of aΔABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that: AF2 + BD2 + CE2 = AE2 + CD2 + BF2


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 = AD2 - BC x CE + `(1)/(4)"BC"^2`


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9BP2 = 9BC2 + 4AC2


In the given figure, PQ = `"RS"/(3)` = 8cm, 3ST = 4QT = 48cm.
SHow that ∠RTP = 90°.


In a right-angled triangle ABC,ABC = 90°, AC = 10 cm, BC = 6 cm and BC produced to D such CD = 9 cm. Find the length of AD.


PQR is an isosceles triangle with PQ = PR = 10 cm and QR = 12 cm. Find the length of the perpendicular from P to QR.


In a square PQRS of side 5 cm, A, B, C and D are points on sides PQ, QR, RS and SP respectively such as PA = PD = RB = RC = 2 cm. Prove that ABCD is a rectangle. Also, find the area and perimeter of the rectangle.


A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?


There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?


To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?


The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ2 = 2PR2 + QR2 


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?


If in a ΔPQR, PR2 = PQ2 + QR2, then the right angle of ∆PQR is at the vertex ________


If ‘l‘ and ‘m’ are the legs and ‘n’ is the hypotenuse of a right angled triangle then, l2 = ________


Find the unknown side in the following triangles


Find the unknown side in the following triangles


Find the unknown side in the following triangles


Find the distance between the helicopter and the ship


In triangle ABC, line I, is a perpendicular bisector of BC.
If BC = 12 cm, SM = 8 cm, find CS


Find the length of the support cable required to support the tower with the floor


Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason


In the figure, find AR


In a right angled triangle, if length of hypotenuse is 25 cm and height is 7 cm, then what is the length of its base?


From given figure, In ∆ABC, If AC = 12 cm. then AB =?


Activity: From given figure, In ∆ABC, ∠ABC = 90°, ∠ACB = 30°

∴ ∠BAC = `square`

∴ ∆ABC is 30° – 60° – 90° triangle

∴ In ∆ABC by property of 30° – 60° – 90° triangle.

∴ AB = `1/2` AC and `square` = `sqrt(3)/2` AC

∴ `square` = `1/2 xx 12` and BC = `sqrt(3)/2 xx 12`

∴ `square` = 6 and BC = `6sqrt(3)`


The perimeters of two similar triangles ABC and PQR are 60 cm and 36 cm respectively. If PQ = 9 cm, then AB equals ______.


A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.


Two angles are said to be ______, if they have equal measures.


Two rectangles are congruent, if they have same ______ and ______.


If the areas of two circles are the same, they are congruent.


If the hypotenuse of one right triangle is equal to the hypotenuse of another right triangle, then the triangles are congruent.


Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?


Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.


The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its top reach?


Share
Notifications



      Forgot password?
Use app×