From given figure, in ∆PQR, if ∠QPR = 90°, PM ⊥ QR, PM = 10, QM = 8, then for finding the value of QR, complete the following activity.Activity: In ∆PQR, if ∠QPR = 90°, PM ⊥ QR, ......[Given] In ∆PM - Geometry

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

From given figure, in ∆PQR, if ∠QPR = 90°, PM ⊥ QR, PM = 10, QM = 8, then for finding the value of QR, complete the following activity.


Activity: In ∆PQR, if ∠QPR = 90°, PM ⊥ QR,  ......[Given]

In ∆PMQ, by Pythagoras Theorem,

∴ PM2 + `square` = PQ2     ......(I)

∴ PQ2 = 102 + 82 

∴ PQ2 = `square` + 64

∴ PQ2 = `square`

∴ PQ = `sqrt(164)`

Here, ∆QPR ~ ∆QMP ~ ∆PMR

∴ ∆QMP ~ ∆PMR

∴ `"PM"/"RM" = "QM"/"PM"`

∴ PM2 = RM × QM

∴ 102 = RM × 8

RM = `100/8 = square`

And,

QR = QM + MR

QR = `square` + `25/2 = 41/2`

Advertisement Remove all ads

Solution

In ∆PQR, if ∠QPR = 90°, PM ⊥ QR,  ......[Given]

In ∆PMQ,

by Pythagoras Theorem,

∴ PM2 + QM2 = PQ2     ......(I)

∴ PQ2 = 102 + 82 

∴ PQ2 = 100 + 64

∴ PQ2 = 164

∴ PQ = `sqrt(164)`

Here, ∆QPR ~ ∆QMP ~ ∆PMR

∴ ∆QMP ~ ∆PMR

∴ `"PM"/"RM" = "QM"/"PM"`   ......[Corresponding sides of similar triangles]

∴ PM2 = RM × QM

∴ 102 = RM × 8

RM = `100/8` = `25/2`

And,

QR = QM + MR

QR = 8 + `25/2 = 41/2`

Concept: Similarity in Right Angled Triangles
  Is there an error in this question or solution?
Share
Notifications

View all notifications


      Forgot password?
View in app×