From given figure, in ∆MNK, if ∠MNK = 90°, ∠M = 45°, MK = 6, then for finding value of MN and KN, complete the following activity.Activity: In ∆MNK, ∠MNK = 90°, ∠M = 45° …...[Given] ∴ ∠K = □ .....[R - Geometry

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

From given figure, in ∆MNK, if ∠MNK = 90°, ∠M = 45°, MK = 6, then for finding value of MN and KN, complete the following activity.


Activity:

In ∆MNK, ∠MNK = 90°, ∠M = 45°  …...[Given]

∴ ∠K = `square`      .....[Remaining angle of ∆MNK]

By theorem of 45° – 45° – 90° triangle,

∴ `square = 1/sqrt(2)` MK and `square = 1/sqrt(2)` MK

∴ MN = `1/sqrt(2) xx square` and KN = `1/sqrt(2) xx 6`

∴ MN = `3sqrt(2)` and KN = `3sqrt(2)`

Advertisement Remove all ads

Solution

In ∆MNK, ∠MNK = 90°, ∠M = 45°   …...[Given]

∴ ∠K = 45°      .....[Remaining angle of ∆MNK]

By theorem of 45° – 45° – 90° triangle,

MN = `1/sqrt(2)` MK and KN = `1/sqrt(2)` MK

∴ MN = `1/sqrt(2) xx 6` and KN = `1/sqrt(2) xx 6`

∴ MN = `(1 xx 6 xx sqrt(2))/(sqrt(2) xx sqrt(2))` and KN = `(1 xx 6 xx sqrt(2))/(sqrt(2) xx sqrt(2))`    .......[Multiply numerator and denominator by `sqrt(2)`]

∴ MN = `(6 xx sqrt(2))/2` and KN = `(6 xx sqrt(2))/2`

∴ MN = `3sqrt(2)` and KN = `3sqrt(2)`

Concept: Property of 30°- 60°- 90° Triangle Theorem
  Is there an error in this question or solution?
Share
Notifications

View all notifications


      Forgot password?
View in app×