From given figure, In ∆ABC, AB ⊥ BC, AB = BC, AC = 52 , then what is the height of ∆ABC? - Geometry Mathematics 2

Advertisements
Advertisements
Sum

From given figure, In ∆ABC, AB ⊥ BC, AB = BC, AC = `5sqrt(2)` , then what is the height of ∆ABC?

Advertisements

Solution

AB = BC     ......[Given]

∴ ∠A = ∠C     ......[Isosceles triangle theorem]

Let ∠A = ∠C = x     ......(i)

In ∆ABC, ∠A + ∠B + ∠C = 180°   ......[Sum of the measures of the angles of a triangle is 180°]

∴ x + 90° + x = 180°     .......[From (i)]

∴ 2x = 90°

∴ x = `90^circ/2`    .......[From (i)]

∴ x = 45°

∴ ∠A = ∠C = 45°

∴ ∆ABC is a 45° – 45° – 90° triangle.

∴ AB = BC = `1/sqrt(2) xx "AC"`    ......[Side opposite to 45°]

= `1/sqrt(2) xx 5sqrt(2)`

∴ AB = BC = 5 units

∴ The height of ∆ABC is 5 units.

  Is there an error in this question or solution?
Chapter 2: Pythagoras Theorem - Q.1 (B)

RELATED QUESTIONS

A man goes 15 metres due west and then 8 metres due north. How far is he from the starting point?


In an isosceles triangle ABC, AB = AC = 25 cm, BC = 14 cm. Calculate the altitude from A on BC.


The lengths of the diagonals of a rhombus are 24 cm and 10 cm. Find each side of the rhombus.


In an acute-angled triangle, express a median in terms of its sides.


In right-angled triangle ABC in which ∠C = 90°, if D is the mid-point of BC, prove that AB2 = 4AD2 − 3AC2.


In Figure, D is the mid-point of side BC and AE ⊥ BC. If BC = a, AC = b, AB = c, ED
= x, AD = p and AE = h, prove that:

(i) `b^2 = p^2 + ax + a^2/4`

(ii) `c^2 = p^2 - ax + a^2/4`

(iii) `b^2 + c^2 = 2p^2 + a^2/2`


State Pythagoras theorem 


Find the length of each side of a rhombus whose diagonals are 24cm and 10cm long. 


The co-ordinates of the points A, B and C are (6, 3), (−3, 5) and (4, −2) respectively. P(xy) is any point in the plane. Show that \[\frac{ar\left( ∆ PBC \right)}{ar\left( ∆ ABC \right)} = \left| \frac{x + y - 2}{7} \right|\]

 


Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm ?


Find the side and perimeter of a square whose diagonal is `13sqrt2` cm. 


From given figure, In ∆ABC, AB ⊥ BC, AB = BC then m∠A = ?


From given figure, In ∆ABC, AB ⊥ BC, AB = BC, AC = `2sqrt(2)` then l (AB) = ?


Find the height of an equilateral triangle having side 4 cm?


Find the altitude of an equilateral triangle of side 8 cm.


In a ΔABC, ∠CAB is an obtuse angle. P is the circumcentre of ∆ABC. Prove that ∠CAB – ∠PBC = 90°.


Share
Notifications



      Forgot password?
Use app×