For which values of a and b does the following pair of linear equations have an infinite number of solutions? 2x + 3y = 7, (a – b) x + (a + b) y = 3a + b – 2 - Mathematics

Advertisements
Advertisements

For which values of a and b does the following pair of linear equations have an infinite number of solutions?

2x + 3y = 7

(a – b) x + (a + b) y = 3a + b – 2

Advertisements

Solution

2x + 3y -7 = 0

(a – b)x + (a + b)y - (3a +b –2) = 0

`a_1/a_2 = 2/(a-b) = 1/2`

`b_1/b_2 = 3/(a+b)`

`c_1/c_2 = -7/-(3a+b-2) = 7/(3a+b-2)`

For infinitely many solutions,

`a_1/a_2 = b_1/b_2 = c_1/c_2`

`2/(a-b) = 7/(3a+b-2)`

6a + 2b - 4 = 7a - 7b

a - 9b = -4 ... (i)

`2/(a-b) = 3/(a+b)`

2a + 2b = 3a - 3b

a - 5b = 0 ... (ii)

Subtracting equation (i) from (ii), we get

4b = 4

b = 1

Putting this value in equation (ii), we get

a - 5 × 1 = 0

a = 5

Hence, a = 5 and b = 1 are the values for which the given equations give infinitely many solutions.

  Is there an error in this question or solution?
Chapter 3: Pair of Linear Equations in Two Variables - Exercise 3.5 [Page 62]

APPEARS IN

NCERT Mathematics Class 10
Chapter 3 Pair of Linear Equations in Two Variables
Exercise 3.5 | Q 2.1 | Page 62

RELATED QUESTIONS

A train travels at a certain average speed for a distance of 54 km and then travels a distance of 63 km at an average speed of 6 km/h more than the first speed. If it takes 3 hours to complete the total journey, what is its first speed?


A motorboat whose speed in still water is 18 km/h, takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.


A thief runs with a uniform speed of 100 m/minute. After one minute, a policeman runs after the thief to catch him. He goes with a speed of 100 m/minute in the first minute and increases his speed by 10 m/minute every succeeding minute. After how many minutes the policeman will catch the thief.


A thief, after committing a theft, runs at a uniform speed of 50 m/minute. After 2 minutes, a policeman runs to catch him. He goes 60 m in first minute and increases his speed by 5 m/minute every succeeding minute. After how many minutes, the policeman will catch the thief?


Solve the following system of equations by cross-multiplication method.

ax + by = a – b; bx – ay = a + b


Which of the following pairs of linear equations has unique solution, no solution or infinitely many solutions? In case there is a unique solution, find it by using cross multiplication method

2x + y = 5

3x + 2y = 8


Which of the following pairs of linear equations has unique solution, no solution, or infinitely many solutions. In case there is a unique solution, find it by using cross multiplication method

3x – 5y = 20

6x – 10y = 40


Form the pair of linear equations in the following problems and find their solutions (if they exist) by any algebraic method

Yash scored 40 marks in a test, getting 3 marks for each right answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each incorrect answer, then Yash would have scored 50 marks. How many questions were there in the test?


Solve each of the following systems of equations by the method of cross-multiplication 

2x − y = 6
x − y = 2


Solve each of the following systems of equations by the method of cross-multiplication 

`x/a + y/b = a + b`


Solve each of the following systems of equations by the method of cross-multiplication :

`57/(x + y) + 6/(x - y) = 5`

`38/(x + y) + 21/(x - y) = 9`


Solve the system of equations by using the method of cross multiplication:
`a/x - b/y = 0, (ab^2)/x + (a^2b)/y = (a^2 + b^2), where x ≠ 0 and y ≠ 0.`


If  `|( 4,5), (m , 3)|` = 22, then find the value of m.


Complete the activity to find the value of x.
3x + 2y = 11 …(i) and 2x + 3y = 4 …(ii)
Solution:
Multiply equation (i) by _______ and equation (ii) by _______.
`square` × (3x + 2y = 11)    ∴ 9x + 6y = 33 …(iii)
`square` × (2x + 3y = 4)      ∴ 4x + 6y = 8   …(iv)
Subtract (iv) from (iii),
`square` x = 25
∴ x = `square`


Solve 0.4x + 0.3y = 1.7; 0.7 x − 0.2y = 0.8


Solve the following pair of equations:

`1/(2x) - 1/y = -1, 1/x + 1/(2y) = 8, x, y ≠ 0`


Susan invested certain amount of money in two schemes A and B, which offer interest at the rate of 8% per annum and 9% per annum, respectively. She received Rs 1860 as annual interest. However, had she interchanged the amount of investments in the two schemes, she would have received Rs 20 more as annual interest. How much money did she invest in each scheme?


Share
Notifications



      Forgot password?
Use app×