Advertisements
Advertisements
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Advertisements
Solution
`("d"y)/("d"x)` = (4x + y + 1) ......(i)
Put 4x + y + 1 = t .....(ii)
Differentiating w.r.t. x, we get
`4 + ("d"y)/("d"x) = ("dt")/("d"x)`
∴ `("d"y)/("d"x) = "dt"/("d"x) - 4` ......(iii)
Substituting (ii) and (iii) in (i), we get
`"dt"/("d"x) - 4` = t
∴ `"dt"/("d"x)` = u + 4
∴ `"dt"/("t" + 4)` = dx
Integrating on both sides, we get
`int "dt"/("t" + 4) = int "d"x`
∴ log |t + 4| = x + c
∴ log |(4x + y + 1) + 4| = x + c
∴ log |4x + y + 5| = x + c ......(iv)
When y = 1, x = 0
∴ log |4(0) + 1 + 5| = x + c
∴ c = log |6|
∴ log |4x + y + 5| = x + log 6 ....[From (iv)]
∴ log |4x + y + 5| – log 6 = x
∴ `log|(4x + y + 5)/6|` = x, which is the required particular solution
RELATED QUESTIONS
Prove that :
`int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = ax^{3} + bx^{2} + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
(e^{y} + 1) cos x dx + e^{y} sin x dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of the differential equation
(1 – y^{2}) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C^{2}.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
If x^{m}y^{n} = (x + y)^{m+n}, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae^{2x} + be^{−x} is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x^{2} – 3y^{2} – 4x = 8.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = e^{x} | `dy/ dx= y` |
Find the differential equation whose general solution is
x^{3} + y^{3} = 35ax.
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For each of the following differential equations find the particular solution.
(x − y^{2} x) dx − (y + x^{2} y) dy = 0, when x = 2, y = 0
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e^{2}.
Solve the following differential equation.
`(x + y) dy/dx = 1`
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is e^{x}, then its solution is
y2 dx + (xy + x^{2})dy = 0
x^{2}y dx – (x^{3} + y^{3}) dy = 0
`xy dy/dx = x^2 + 2y^2`
y dx – x dy + log x dx = 0
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae^{5x} + Be^{–5x} is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec^{2}y tan x dy + sec^{2}x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e^{−x}
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x^{2} – yx^{2})dy + (y^{2} + xy^{2})dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x^{2}y + y
Solve: `("d"y)/("d"x) + 2/xy` = x^{2}
For the differential equation, find the particular solution (x – y^{2}x) dx – (y + x^{2}y) dy = 0 when x = 2, y = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x^{2} + 2y^{2}
Solve the following differential equation y^{2}dx + (xy + x^{2}) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x^{2} + xy − y^{2}
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e^{–x}
Solve the following differential equation `("d"y)/("d"x)` = x^{2}y + y
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
sec^{2} x tan y dx + sec^{2} y tan x dy = 0
Solution: sec^{2} x tan y dx + sec^{2} y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e^{2y} cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e^{2y} cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c_{1}
∴ e^{–2y} = – 2sin x – 2c_{1}
∴ `square` = c, where c = – 2c_{1 }
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve the differential equation `"dy"/"dx"` = 1 + x + y^{2} + xy^{2}, when y = 0, x = 0.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to:
The differential equation (1 + y^{2})x dx – (1 + x^{2})y dy = 0 represents a family of:
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation
`x + y dy/dx` = x^{2} + y^{2}
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.