For the relation R1 defined on R by the rule (a, b) ∈ R1 ⇔ 1 + ab > 0. Prove that: (a, b) ∈ R1 and (b , c) ∈ R1 ⇒ (a, c) ∈ R1 is not true for all a, b, c ∈ R.
Advertisement Remove all ads
Solution
We have:
(a, b) ∈ R1 ⇔ 1 + ab > 0
Let:
a = 1, b = \[- \frac{1}{2}\]and c = -4
Now,
\[\left( 1, - \frac{1}{2} \right) \in R_1 \text{ and } \left( - \frac{1}{2}, - 4 \right) \in R_1 \] , as
\[1 + \left( - \frac{1}{2} \right) > 0 \text{ and } 1 + \left( - \frac{1}{2} \right)\left( - 4 \right) > 0\] But
\[1 + 1 \times \left( - 4 \right) < 0\]
∴ (1, - 4) \[\not\in R_1\] And,
(a, b) ∈ R1 and (b , c) ∈ R1
Thus, (a, c) ∈ R1 is not true for all a, b, c ∈ R.
(a, b) ∈ R1 and (b , c) ∈ R1
Thus, (a, c) ∈ R1 is not true for all a, b, c ∈ R.
Concept: Relation
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads