Advertisement Remove all ads

# For the Relation R1 Defined on R by the Rule (A, B) ∈ R1 ⇔ 1 + Ab > 0. Prove That: (A, B) ∈ R1 and (B , C) ∈ R1 ⇒ (A, C) ∈ R1 is Not True for All A, B, C ∈ R. - Mathematics

For the relation R1 defined on R by the rule (ab) ∈ R1 ⇔ 1 + ab > 0. Prove that: (ab) ∈ R1 and (b , c) ∈ R1 ⇒ (ac) ∈ R1 is not true for all abc ∈ R.

Advertisement Remove all ads

#### Solution

We have:
(ab) ∈ R1 ⇔ 1 + ab > 0
Let:
a = 1, b = $- \frac{1}{2}$and c = -4

Now,

$\left( 1, - \frac{1}{2} \right) \in R_1 \text{ and } \left( - \frac{1}{2}, - 4 \right) \in R_1$ , as

$1 + \left( - \frac{1}{2} \right) > 0 \text{ and } 1 + \left( - \frac{1}{2} \right)\left( - 4 \right) > 0$ But
$1 + 1 \times \left( - 4 \right) < 0$
∴ (1, - 4) $\not\in R_1$ And,
(ab) ∈ R1 and (b , c) ∈ R1
Thus, (ac) ∈ R1 is not true for all abc ∈ R.

Concept: Relation
Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 2 Relations
Exercise 2.3 | Q 21 | Page 21
Advertisement Remove all ads

#### Video TutorialsVIEW ALL 

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?