Advertisement Remove all ads

For Non-zero Vectors → a , → B and → C the Relation - Mathematics

MCQ
Sum

For non-zero vectors \[\vec{a,} \vec{b} \text { and }\vec{c}\] the relation \[\left| \left( \vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|\] holds good, if

Options

  • \[\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = 0\]

  • \[\vec{a} \cdot \vec{b} = 0 = \vec{c} \cdot \vec{a}\]

  • \[\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0\]

  • \[\vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0\]

Advertisement Remove all ads

Solution

\[ \vec{a} . \vec{b} = \vec{b} . \vec{c} = \vec{c} . \vec{a} = 0\]

We have

\[\left| \left( \vec{a} \times \vec{b} \right) . \vec{c} \right| \]

\[ = \left| \left( \vec{a} \times \vec{b} \right) \right| \left| \vec{c} \right|\left| cos\theta \right|\]

\[ = \left| \left( \vec{a} \times \vec{b} \right) \right| \left| \vec{c} \right| \left( \text { If } \theta = 0^\circ \text { or } 180^\circ , \text { i . e . vectors } \vec{a} \times \vec{b} \text { and }\vec {c}\text {  are parallel } \right)\]

\[ = \left| \left( \left| \vec{a} \right|\left| \vec{b} \right| \sin \alpha \right) \right|\left| \vec{c} \right|\]

\[ = \left| \vec{a} \right|\left| \vec{b} \right|\left| \vec{c} \right| \left( \text { If } \alpha = 90^\circ,\text {  i . e . vectors }\vec{a}\text { and } \vec{b} \text { are perpendicular } \right)\]

\[ \therefore \left| \left( \vec{a} \times \vec{b} \right) . \vec{c} \right| = \left| \vec{a} \right|\left| \vec{b} \right|\left| \vec{c} \right| \left(\text {  If vectors } \vec{a} , \vec{b} , \vec{c} \text { are perpendicular to each other } \right)\]

\[\text { Thus, the relation } \left| \left( \vec{a} \times \vec{b} \right) . \vec{c} \right| = \left| \vec{a} \right|\left| \vec{b} \right|\left| \vec{c} \right|\text {  holds good if } \vec{a} . \vec{b} = 0 , \vec{b} . \vec{c} = 0 \text { and } \vec{c} . \vec{a} = 0 .\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 26 Scalar Triple Product
MCQ | Q 12 | Page 19
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×