For going to a city B from city A, there is a route via city C such that AC ⊥ CB, AC = 2x km and CB = 2(x + 7) km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.
Solution
Given,
AC ⊥ CB,
AC = 2x km,
CB = 2(x + 7) km and AB = 26 km
Thus, we get ∆ACB right angled at C.
Now, from ∆ACB,
Using Pythagoras Theorem,
AB2 = AC2 + BC2
⇒ (26)2 = (2x)2 + {2(x + 7)}2
⇒ 676 = 4x2 + 4(x2 + 196 + 14x)
⇒ 676 = 4x2 + 4x2 + 196 + 56x
⇒ 676 = 82 + 56x + 196
⇒ 8x2 + 56x – 480 = 0
Dividing the equation by 8, we get,
x2 + 7x – 60 = 0
x2 + 12x – 5x – 60 = 0
x(x + 12) – 5(x + 12) = 0
(x + 12)(x – 5) = 0
∴ x = – 12 or x = 5
Since the distance can’t be negative, we neglect x = –12
∴ x = 5
Now,
AC = 2x = 10km
BC = 2(x + 7) = 2(5 + 7) = 24 km
Thus, the distance covered to city B from city A via city C = AC + BC
AC + BC = 10 + 24
= 34 km
Distance covered to city B from city A after the highway was constructed = BA = 26 km
Therefore, the distance saved = 34 – 26 = 8 km.