Advertisement Remove all ads

For a certain bivariate data, following information is available. X Y Mean 13 17 S.D. 3 2 Size 3. 10 10 Obtain the combined standard deviation. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

For certain bivariate data, the following information is available.

  X Y
Mean 13 17
S.D. 3 2
Size 10 10

Obtain the combined standard deviation.

Advertisement Remove all ads

Solution

`barx = 13;  bary = 17`, σx = 3;  σy = 2, nx = 10,  ny = 10.
Combined Mean,

`bar(x_c) = ("n"_x barx + "n"_y bary)/("n"_x + "n"_y)`

= `(10(13) + (10)(17))/(10 + 10)`

= `(130 + 170)/(20)`

= `(300)/(20)`

∴ `bar(x_c)` = 15

Combined standard deviation is given by,

σc = `sqrt((n_x(σ_x^2 + d_x^2) + n_y(σ_y^2 + d_y^2))/(n_x + n_y)`

Where, `d_1 = barx - barx_c, d_2 = bary - barx_c`

∴ d1 = 13 – 15 = – 2 and d2 = 17 –15 = 2.

∴ σc = `sqrt((10[3^2 + (-2)^2] + 10(2^2 + 2^2))/(10 + 10)`

= `sqrt((10[9 + 4] + 10(4 + 4))/(20)`

= `sqrt((10(13) + 10(8))/(20)`

= `sqrt((130 + 80)/(20))`

= `sqrt((210)/(20))`

= `sqrt(10.5)`

Concept: Standard Deviation for Combined Data
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×