# For a certain bivariate data, following information is available. X Y Mean 13 17 S.D. 3 2 Size 3. 10 10 Obtain the combined standard deviation. - Mathematics and Statistics

Sum

For certain bivariate data, the following information is available.

 X Y Mean 13 17 S.D. 3 2 Size 10 10

Obtain the combined standard deviation.

#### Solution

barx = 13;  bary = 17, σx = 3;  σy = 2, nx = 10,  ny = 10.
Combined Mean,

bar(x_c) = ("n"_x barx + "n"_y bary)/("n"_x + "n"_y)

= (10(13) + (10)(17))/(10 + 10)

= (130 + 170)/(20)

= (300)/(20)

∴ bar(x_c) = 15

Combined standard deviation is given by,

σc = sqrt((n_x(σ_x^2 + d_x^2) + n_y(σ_y^2 + d_y^2))/(n_x + n_y)

Where, d_1 = barx - barx_c, d_2 = bary - barx_c

∴ d1 = 13 – 15 = – 2 and d2 = 17 –15 = 2.

∴ σc = sqrt((10[3^2 + (-2)^2] + 10(2^2 + 2^2))/(10 + 10)

= sqrt((10[9 + 4] + 10(4 + 4))/(20)

= sqrt((10(13) + 10(8))/(20)

= sqrt((130 + 80)/(20))

= sqrt((210)/(20))

= sqrt(10.5)

Concept: Standard Deviation for Combined Data
Is there an error in this question or solution?
Chapter 2: Measures of Dispersion - Exercise 2.3 [Page 33]

Share