Advertisement Remove all ads

Five Bad Oranges Are Accidently Mixed with 20 Good Ones. If Four Oranges Are Drawn One by One Successively with Replacement, Then Find the Probability Distribution of Number of Bad Oranges Drawn. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.

Advertisement Remove all ads

Solution

Let be the random variable denoting the number of bad oranges drawn.
P (getting a good orange) = \[\frac{20}{25} = \frac{4}{5}\]

P (getting a bad orange) = \[\frac{5}{25} = \frac{1}{5}\]

The probability distribution of X is given by

0 1 2 3 4
P(X)
\[\left( \frac{4}{5} \right)^4\]
=\[\frac{256}{625}\]
\[^{4}{}{C}_1 \left( \frac{4}{5} \right)^3 \left( \frac{1}{5} \right)\]
=\[\frac{256}{625}\]
\[^{4}{}{C}_2 \left( \frac{4}{5} \right)^2 \left( \frac{1}{5} \right)^2\]
=\[\frac{96}{625}\]
\[^{4}{}{C}_3 \left( \frac{4}{5} \right) \left( \frac{1}{5} \right)^3\]
=\[\frac{16}{625}\]
\[\left( \frac{1}{5} \right)^4\]
=\[\frac{1}{625}\]

Mean of X is given by

\[\overline{X} = \sum P_i X_i\]

\[= 0 \times \frac{256}{625} + 1 \times \frac{256}{625} + 2 \times \frac{96}{625} + 3 \times \frac{16}{625} + 4 \times \frac{1}{625}\]

\[ = \frac{1}{625}\left( 256 + 192 + 48 + 4 \right)\]

\[ = \frac{4}{5}\]

Variance of X is given by \[\text{ Var } (X) = \sum P_i {X_i}^2 - \left( \sum P_i X_i \right)^2\]

\[= 0 \times \frac{256}{625} + 1 \times \frac{256}{625} + 4 \times \frac{96}{625} + 9 \times \frac{16}{625} + 16 \times \frac{1}{625} - \left( \frac{4}{5} \right)^2 \]

\[ = \frac{1}{625}\left( 256 + 384 + 144 + 16 \right) - \frac{16}{25}\]

\[ = \frac{800}{625} - \frac{16}{25}\]

\[ = \frac{400}{625}\]

\[ = \frac{16}{25}\]

Thus, the mean and vairance of the distribution are \[\frac{4}{5}\] and  \[\frac{16}{25}\] , respectively.

 
 
Concept: Random Variables and Its Probability Distributions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 33 Binomial Distribution
Exercise 33.2 | Q 27 | Page 26
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×