Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Fit a trend line to the data in Problem 4 above by the method of least squares. Also, obtain the trend value for the index of industrial production for the year 1987.

Advertisement Remove all ads

Solution

In the given problem, x = 10(even), two middle t – values are 1980 and 1981, h = 1

u = `"t - mean of two middle values"/("h"/(2)) = ("t" - 1980.5)/(1/2)` = 2(t – 1980.5)

We obtain the following table.

Year (t) Index of industrial production yt u = 2
(t - 1980.5)
u2 uyt Trend value
1976 0 –9 81 0 0.1635
1977 2 –7 49 –14 1.0605
1978 3 –5 25 –15 1.9575
1979 3 –3 9 –9 2.8545
1980 2 –1 1 –2 3.7515
1981 4 1 1 4 4.6485
1982 5 3 9 15 5.5455
1983 6 5 25 30 6.4425
1984 7 7 49 49 7.3395
1985 10 9 81 90 8.2365
Total 42 0 330 148  

From the table, n = 10, `sumy_"t" = 42, sumu = 0, sumu^2 = 330, sumuy_"t" = 148`

The two normal equations are : `sumy_"t" = "na"' + "b"' sumu  "and" sumuy_"t" = "a"' sumu + "b"'sumu^2`

∴ 42 = 10a' + b'(0)        ...(i)   and
148 = a'(0) + b'(330)    ...(ii)

From (i), a' = `(42)/(10)` = 4.2

From (ii), b' = `(148)/(330)` = 0.4485
∴ The equation of the trend line is yt = a' + b'u
i.e., yt = 4.2 + 0.4485 u, where u = 2(t – 1980.5)
∴ Now, For t = 1987, u = 2(1987 – 1980.5) = 2 x 6.5 = 13
∴ yt = 4.2 + 0.4485 x 13 = 10.0305.

Concept: Measurement of Secular Trend
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×