Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find y2 for the following function:
y = e3x+2
Advertisement Remove all ads
Solution
y = e3x+2
`y_1 = "dy"/"dx" = e^(3x + 2) "d"/"dx" (3x + 2)`
`= e^(3x + 2) (3(1) + 0)`
= `3e^(3x + 2)`
`y_2 = ("d"^2"y")/"dx"^2`
`= 3 ["d"/"dx" (e^(3x + 2))]`
= 3`[3e^(3x + 2)]`
= 9`e^(3x + 2)`
= 9y
Concept: Differentiation Techniques
Is there an error in this question or solution?