Advertisement Remove all ads

Advertisement Remove all ads

Advertisement Remove all ads

Sum

**Find y _{2} for the following function:**

y = e^{3x+2}

Advertisement Remove all ads

#### Solution

y = e^{3x+2 }

`y_1 = "dy"/"dx" = e^(3x + 2) "d"/"dx" (3x + 2)`

`= e^(3x + 2) (3(1) + 0)`

= `3e^(3x + 2)`

`y_2 = ("d"^2"y")/"dx"^2`

`= 3 ["d"/"dx" (e^(3x + 2))]`

= 3`[3e^(3x + 2)]`

= 9`e^(3x + 2)`

= 9y

Concept: Differentiation Techniques

Is there an error in this question or solution?