Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Find x in terms of a, b and c: `a/(x-a)+b/(x-b)=(2c)/(x-c)`
Advertisement Remove all ads
Solution
Consider the given equation:
`a/(x-a)+b/(x-b)=(2c)/(x-c)`
Taking the LCM and then cross multiplying, we get
`(a(x-b)+b(x-a))/((x-a)(x-b))=(2c)/(x-c)`
⇒(x−c)[a(x−b)+b(x−a)]=2c(x−a)(x−b)
⇒(x−c)[ax−ab+bx−ab]=2c(x2−bx−ax+ab)
⇒ax2−2abx+bx2−acx+2abc−bcx=2cx2−2bcx−2acx+2abc
⇒ax2+bx2−2cx2=2abx−acx−bcx
⇒(a+b−2c)x2=x(2ab−ac−bc)
⇒(a+b−2c)x2−x(2ab−ac−bc)=0
⇒x[(a+b−2c)x−(2ab−ac−bc)]=0
⇒x=0 or (a+b−2c)x−(2ab−ac−bc)=0
⇒x=0 or (a+b−2c)x=(2ab−ac−bc)
`=>x = 0 `
Thus, the two roots of the given equation are x = 0 and `(2ab-ac-bc)/(a+b-2c)`
Concept: Solutions of Quadratic Equations by Factorization
Is there an error in this question or solution?