Advertisement
Advertisement
Advertisement
Find:
`int(x^3-1)/(x^3+x)dx`
Advertisement
Solution
Let
`I=int(x^3-1)/(x^3+x)dx`
`=int(x^3+x-x-1)/(x^3+x)dx`
`=int[(x^3+x)/(x^3+x)-(x+1)/(x^3+x)]dx`
`=int[1-(x+1)/(X^3+x)]dx`
`=intidx-int(x+1)/(x^3+x)dx`
`=x+C_1-int(x+1)/(x^3+x)dx`
`then I=x+c_1+I_1...................(i)`
now
`I_1=int(x+1)/(x^3+x)dx`
`=>I_1=int(x+1)/(x(x^2+1))dx`
`Let (x+1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)`
`=>(x+1)/(x(x^2+1))=((A+B)x^2+Cx+A)/(x(x^2+1))`
Comparing the coefficients of numerator, we get
A = 1, B = − 1 and C = 1
`So I_1=int(x+1)/(x(x^2+1))dx=int1/x dx+int(-x+1)/(x^2+1)dx`
`=>I_1=log|x|+int(-x+1)/(x^2+1)dx`
`=>I_1=log|x|-1/2int(2x)/(x^2+1)dx+int1/(x^2+1)dx`
`=>I_1=log|x|-1/2log|x^2+1|+tan^(-1)(x^2+1)+C_2..................(ii)`
From (i) and (ii), we get
`I=x-log|x|-1/2log|x^2+1|-tan^(-1)(x^2+1)+C`
Is there an error in this question or solution?