Advertisement Remove all ads

Find the Vertex, Focus, Axis, Directrix and Latus-rectum of the Following Parabola Y2 = 5x − 4y − 9 - Mathematics

Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 

Advertisement Remove all ads

Solution

Given: 

 y 2 = 5x − 4y − 9 

\[\Rightarrow y^2 + 4y = 5x - 9\]
\[ \Rightarrow \left( y + 2 \right)^2 = 5x - 5 = 5\left( x - 1 \right)\]

Putting \[Y = y + 2\] 

\[X = x - 1\]

\[Y^2 = 5X\]

Comparing the given equation with \[Y^2 = 4aX\] 

\[4a = 5 \Rightarrow a = \frac{5}{4}\]

∴ Vertex = (= 0, = 0) =\[\left( x = 1, y = - 2 \right)\]

Focus = (aY = 0) =\[\left( x - 1 = \frac{5}{4}, y + 2 =0 \right) = \left( x = \frac{9}{4}, y = - 2 \right)\] 

Equation of the directrix:
X = −a
i.e.\[x - 1 = \frac{- 5}{4} \Rightarrow x = \frac{- 1}{4}\] 

Axis = Y = 0
i.e.\[y + 2 = 0 \Rightarrow y = - 2\]

Length of the latus rectum = 4a = 5 units

 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 25 Parabola
Exercise 25.1 | Q 4.8 | Page 24
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×