Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 12
Advertisement Remove all ads

Find the Vector Equation of the Plane Through the Line of Intersection of the Planes X + Y + Z = 1 and 2x + 3y + 4z = 5 Which is Perpendicular to the Plane X − Y + Z = 0. - Mathematics

Sum

Find the vector equation of the plane through the line of intersection of the planes x + yz = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x − y + z = 0.

 
Advertisement Remove all ads

Solution

`\text{ The equation of the plane passing through the line of intersection of the given planes is}`
\[x + y + z - 1 + \lambda \left( 2x + 3y + 4z - 5 \right) = 0 \]
\[\left( 1 + 2\lambda \right)x + \left( 1 + 3\lambda \right)y + \left( 1 + 4\lambda \right)z - 1 - 5\lambda = 0 . . . \left( 1 \right)\]
`\text{ This plane is perpendicular to x - y + z = 0 . So,}`
\[1 + 2\lambda - 1 \left( 1 + 3\lambda \right) + 1 + 4\lambda = 0 (\text{ Because a}_1 a_2 + b_1 b_2 + c_1 c_2 = 0)\]
\[ \Rightarrow 1 + 2\lambda - 1 - 3\lambda + 1 + 4\lambda = 0\]
\[ \Rightarrow 3\lambda + 1 = 0\]
\[ \Rightarrow \lambda = \frac{- 1}{3}\]
`\text{ Substituting this in (1), we get }`
\[\left( 1 + 2 \left( \frac{- 1}{3} \right) \right)x + \left( 1 + 3 \left( \frac{- 1}{3} \right) \right)y + \left( 1 + 4 \left( \frac{- 1}{3} \right) \right)z - 1 - 5 \left( \frac{- 1}{3} \right) = 0\]
\[ \Rightarrow x - z + 2 = 0\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 29 The Plane
Exercise 29.8 | Q 16 | Page 40
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×