Find the values of the following trigonometric ratio:
\[\tan\left( - \frac{13\pi}{4} \right)\]
Advertisement Remove all ads
Solution
We have:
\[\tan \left( - \frac{13\pi}{4} \right) = \tan \left( - 585^\circ \right)\]
\[\tan \left( - 585^\circ \right) = - \tan \left( 585^\circ \right) = - \tan \left( 90^\circ \times 6 + 45^\circ \right)\]
\[585^\circ\text{ lies in the third quadrant in which tangent function is positive . }\]
Also, 6 is an even integer .
\[ \therefore \tan \left( - 585^\circ \right) = - \tan \left( 585^\circ \right) = - \tan \left( 90^\circ \times 6 + 45^\circ \right) = - \tan 45^\circ = - 1\]
Concept: Negative Function Or Trigonometric Functions of Negative Angles
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads