Find the values of the following trigonometric ratio:
\[\cos\frac{19\pi}{4}\]
Advertisement Remove all ads
Solution
We have:
\[\cos\frac{19\pi}{4} = \cos 855^\circ\]
\[855^\circ = 90^\circ \times 9 + 45^\circ\]
\[855^\circ\text{ lies in the second quadrant in which the cosine function is negative . }\]
Also, 9 is an odd integer .
\[ \therefore \cos\left( 855^\circ \right) = \cos\left( 90^\circ \times 9 + 45^\circ \right) = - \sin\left( 45^\circ \right) = - \frac{1}{\sqrt{2}}\]
Concept: Negative Function Or Trigonometric Functions of Negative Angles
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads