Answer in Brief
Find the value of x3 + y3 − 12xy + 64, when x + y =−4
Advertisement Remove all ads
Solution
The given expression is
`x^3 +y^3 - 12xy +64`
It is given that
`x+y = -4`
`⇒ x+y+4 = 0`
The given expression can be written in the form
`x^3+y^3 -12xy +64 = x^3 +y^3+ 64 -12xy`
` = (x)^3 + (y)^3 + (4)^3 - 3.(x).(y).(4)`
Recall the formula
`a^3+b^3 +c^3 -3abc = (a+b+c)(a^2+b^2 +c^2 - ab -bc - ca)`
Using the above formula, we have
`x^3 +y^3 -12xy +64`
`= (x+y+4){(x)^2 + (y)^2 + (4)^2 - (x).(y) - (y).(4) -(4).(x)}`
` = (x+y+4)(x^2 +y^2 +16 - xy -4y -4x)`
` = 0.(x^2 +y^2 +16 - xy -4y-4x)`
` = 0`
Concept: Algebraic Expressions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads