# Find the Value of λ for Which the Four Points with Position Vectors − ^ J − ^ K , 4 ^ I + 5 ^ J - Mathematics

Sum

Find the value of λ for which the four points with position vectors

$-\hat { j} - \hat {k} , 4 \hat {i} + 5 \hat {j} + \lambda \hat {k} , 3 \hat {i} + 9 \hat {j} + 4 \hat {k} \text { and } - 4 \hat {i} + 4 \hat {j} + 4 \hat{k}$

#### Solution

Let A, B, C and D be the given points . Then,

$\overrightarrow{AB} = (4 \hat{i} + 5 \hat {j} + \lambda \hat {k} ) - ( 0 \hat {i} - \stackrel\frown {j}- \stackrel\frown {k} ) = 4 \hat {i} + 6 \hat {j}+ (\lambda + 1) \hat {k}$

$\overrightarrow{AC} = (3 \hat {i} + 9 \hat {j}+ 4 \hat {k}) - ( 0 \hat {i} - \hat {j} - \hat {k} ) = 3 \hat {i} + 10 \hat {j} + 5 \hat {k}$

$\overrightarrow{AD} = ( - 4 \hat {i} + 4 \hat {j} + 4 \hat {k} ) - (0 \hat {i} - \hat {j} - \hat {k} ) = - 4 \hat {i} + 5 \hat {j} + 5 \hat {k}$

$\text{The given points are coplanar iff vectors }\overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD}\text { are coplanar} .$

$\text {Now,} \overrightarrow{AB} ,\overrightarrow{AC} , \overrightarrow{AD } \text { are coplanar} .$

$\Rightarrow \begin{bmatrix}\overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{AD}\end{bmatrix} = 0$

$\Rightarrow \begin{vmatrix}4 & 6 & (\lambda + 1) \\ 3 & 10 & 5 \\ - 4 & 5 & 5\end{vmatrix} = 0$

$\Rightarrow 4(50 - 25) - 6 (15 + 20) + (\lambda + 1)(15 + 40) = 0$

$\Rightarrow 100 - 210 + 55\lambda + 55 = 0$

$\Rightarrow 55\lambda = 55$

$\Rightarrow \lambda = 1$

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 12 Maths
Chapter 26 Scalar Triple Product
Exercise 26.1 | Q 9 | Page 17