Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find the value of 'k' if the function
`f(X)=(tan7x)/(2x) , "for " x != 0 `
`=k`, for x=0
is continuos at x=0
Advertisement Remove all ads
Solution
Given
`f(X)=(tan7x)/(2x) ,`
`=k`
f(0)=k
`Now lim_(x->0)f(x)= lim_(x->0)(tan7x)/(2x)`
` = lim_(x->0)(tan7x)/(7x) (7/2)`
` =1xx 7/2`
as function f(x) is coninuous at x=0
`lim_(x->0)f(x)=f(0)=k`
`k=7/2`
Concept: Continuous Function of Point
Is there an error in this question or solution?