Advertisement Remove all ads

Find the value of the following: tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1 - Mathematics

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`

Advertisement Remove all ads

Solution

We have to find the value of `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]`

We know that: `sin^(-1)(2x)/(1+x^2)=2tan^(-1)x for |x| ≤ 1 …… (1)`

`cos^(-1)(1-y^2)/(1+y^2)=2tan^(-1)y  for y > 0 …… (2)`

`Now sin^(-1)((2x)/(1+x^2)) + cos^(-1)((1-y^2)/(1+y^2))=2tan^(-1)x+2tan^(-1)y`

`tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]=tan(1/2)(2tan^(-1)x+2tan^(-1)y)=tan(tan^(-1)x+tan^(-1)y)`

Since, ` tan^(−1)x + tan^(−1)y = tan^(−1)((x+y)/(1-xy)) for xy < 1`

`therefore tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]=tan(tan^(−1)((x+y)/(1-xy)))=(x+y)/(1-xy)`

Concept: Inverse Trigonometric Functions (Simplification and Examples)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×