Advertisement Remove all ads

Find the Value of the Following Expression: 81x2 + 16y2 − 72xy, When X = 2 3 and Y = 3 4 - Mathematics

Answer in Brief

Find the value of the following expression:  81x2 + 16y2 − 72xy, when \[x = \frac{2}{3}\] and  \[y = \frac{3}{4}\]

Advertisement Remove all ads

Solution

Let us consider the following expression: \[81 x^2 + 16 y^2 - 72xy\]

Now

\[81 x^2 + 16 y^2 - 72xy = \left( 9x - 4y \right)^2\]         (Using identity \[\left( a + b \right)^2 = a^2 - 2ab + b^2\])

\[\Rightarrow 81 x^2 + 16 y^2 - 72xy = \left[ 9\left( \frac{2}{3} \right) - 4\left( \frac{3}{4} \right) \right]^2 (\text { Substituting } x = \frac{2}{3}\text { and y } = \frac{3}{4})\]

\[ \Rightarrow 81 x^2 + 16 y^2 - 72xy = \left[ 6 - 3 \right]^2 \]

\[ \Rightarrow 81 x^2 + 16 y^2 - 72xy = 3^2 \]

\[ \Rightarrow 81 x^2 + 16 y^2 - 72xy = 9\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 8 Maths
Chapter 6 Algebraic Expressions and Identities
Exercise 6.6 | Q 13.3 | Page 44
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×