Advertisement Remove all ads

Find the Value of (1.01)10 + (1 − 0.01)10 Correct to 7 Places of Decimal. - Mathematics

Find the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of decimal.

 
Advertisement Remove all ads

Solution

\[(1 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = (1 + 0 . 01 )^{10} + (1 - 0 . 01 )^{10} \]

\[ = 2[ ^{10}{}{C}_0 \times (0 . 01 )^0 +^{10}{}{C}_2 \times (0 . 01 )^2 +^{10}{}{C}_4 \times (0 . 01 )^4 +^{10}{}{C}_6 \times (0 . 01 )^6 + ^{10}{}{C}_8 \times (0 . 01 )^8 + ^{10}{}{C}_{10} \times (0 . 01 )^{10} ]\]

\[ = 2\left( 1 + 45 \times 0 . 0001 + 210 \times 0 . 00000001 + . . . \right) \]

\[ = 2\left( 1 + 0 . 0045 + 0 . 00000210 + . . . \right)\]

\[ = 2 . 0090042 + . . .\]

Hence, the value of (1.01)10 + (1 − 0.01)10 correct to 7 places of the decimal is 2.0090042

 
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 18 Binomial Theorem
Exercise 18.1 | Q 11 | Page 12
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×