Advertisement Remove all ads

Find two unit vectors each of which makes equal angles with bar"u", bar"v" and bar"w" where bar"u" = 2hat"i" + hat"j" - 2hat"k", bar"v" = hat"i"+ 2hat"j" - 2hat"k", bar"w" = 2hat"i" - 2hat"j" + hat"k" - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find two unit vectors each of which makes equal angles with bar"u", bar"v" and bar"w" where bar"u" = 2hat"i" + hat"j" - 2hat"k", bar"v" = hat"i" + 2hat"j" - 2hat"k", bar"w" = 2hat"i" - 2hat"j" + hat"k".

Advertisement Remove all ads

Solution

Let `bar"r" = "x"hat"i" + "y"hat"j" + "z"hat"k"` be the unit vector which makes angle  θ with each of the vectors

Then `|bar"r"| = 1`

Also, `bar"u" = 2hat"i" + hat"j" - 2hat"k", bar"v"= hat"i" + 2hat"j" - 2hat"k", bar"w" = 2hat"i" - 2hat"j" + hat"k"`

`|bar"u"| = sqrt(2^2 + 1^2 + (- 2)^2) = sqrt(4 + 1 + 4) = sqrt9 = 3`

`|bar"v"| = sqrt(1^2 + 2^2 + (- 2)^2) = sqrt(1 + 4 + 4) = sqrt9 = 3`

`|bar"w"| = sqrt(2^2 + (- 2)^2 + 1^2) = sqrt(4 + 4 + 1) = sqrt9 = 3`

Angle between `bar"r" and bar"u"` is θ

∴ cos θ = `(bar"r".bar"u")/(|bar"r"||bar"u"|)`

`= (("x"hat"i" + "y"hat"j" + "z"hat"k").(2hat"i" + hat"j" - 2hat"k"))/(1xx3)`

`= (2"x" + "y" - 2"z")/3`          ....(1)

Also, the angle between `bar"r" and bar"v"` and between `bar"r" and bar"w"` is θ.

∴ cos θ = `(bar"r".bar"u")/(|bar"r"||bar"u"|)`

`= (("x"hat"i" + "y"hat"j" + "z"hat"k").(hat"i" + 2hat"j" - 2hat"k"))/(1xx3)`

`= ("x" + 2"y" - 2"z")/3`          ....(2)

and cos θ `= (bar"r".bar"u")/(|bar"r"||bar"u"|)`

`= (("x"hat"i" + "y"hat"j" + "z"hat"k").(2hat"i" - 2hat"j" + hat"k"))/(1xx3)`

`= (2"x" - 2"y" + "z")/3`          ....(3)

From (1) and (2), we get

`(2"x" + "y" - 2"z")/3 = ("x" + 2"y" - 2"z")/3`

∴ 2x + y - 2z = x + 2y - 2z

∴ x = y

From (2) and (3), we get

`("x" + 2"y" - 2"z")/3 = (2"x" - 2"y" + "z")/3`

∴ x + 2y - 2z = 2x - 2y + z

∴ 3y = 3z         .....[∵ x = y]

∴ y = z

∴ x = y = z

∴ `bar"r" = "x"hat"i" + "y"hat"j" + "z"hat"k" = "x"hat"i" + "x"hat"j" + "x"hat"k"`

∴ `|bar"r"| = sqrt("x"^2 + "x"^2 + "x"^2) = 1`

∴ `"x"^2 + "x"^2 + "x"^2 = 1`

∴ `3"x"^2 = 1`

∴ `"x"^2 = 1/3`

∴ x = `- 1/sqrt3 `

∴ `bar"r" = +- 1/sqrt3 hat"i" +- 1/sqrt3 hat"j" +- 1/sqrt3hat"k" `

`= +- 1/sqrt3 (hat"i" + hat"j" + hat"k")`

Hence, the required unit vectors are `+- 1/sqrt3 (hat"i" + hat"j" + hat"k")`

Concept: Vectors and Their Types
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×