# Find Three Numbers in G.P. Whose Product is 729 and the Sum of Their Products in Pairs is 819. - Mathematics

Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.

#### Solution

Let the required numbers be $\frac{a}{r}, \text { a and ar } .$

Product of the G.P. = 729

$\Rightarrow a^3 = 729$

$\Rightarrow a = 9$

Sum of the products in pairs = 819

$\Rightarrow \frac{a}{r} \times a + a \times ar + ar \times \frac{a}{r} = 819$

$\Rightarrow a^2 \left( \frac{1}{r} + r + 1 \right) = 819$

$\Rightarrow 81\left( \frac{1 + r^2 + r}{r} \right) = 819$

$\Rightarrow 9\left( r^2 + r + 1 \right) = 91r$

$\Rightarrow 9 r^2 - 82r + 9 = 0$

$\Rightarrow 9 r^2 - 81r - r + 9 = 0$

$\Rightarrow \left( 9r - 1 \right)\left( r - 9 \right) = 0$

$\Rightarrow r = \frac{1}{9}, 9$

$\text { Hence, putting the values of a and r, we get the numbers to be 81, 9 and 1 or 1, 9 and 81 } .$

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 20 Geometric Progression
Exercise 20.2 | Q 8 | Page 16