Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

Find the Value of X for Which the Function F(X) = X^3 - 3x^2 - 9x + 25s Increasing. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the value of x for which the function `f(x) = x^3 - 3x^2 - 9x + 25` is increasing.

Advertisement Remove all ads

Solution

`f(x) = x^3 - 3x^2 - 9x + 25`
Diffrentiating w.r.t.x
`f(x) = 3x^2 - 6x - 9`
If f is increasing then f(x) > 0
`3x^2 - 6x - 9 > 0`   
`3(x^2 - 2x -  3) > 0`
`3 (x^2 - 3x + x - 3) > 0`
`3[x(x -3) + (x - 3)] > 0`
`3[(x - 3) (x + 1)] > 0`

x - 3 > 0        and x + 1 > 0
or (x - 3) < 0   and (x + 1) < 0
For x - 3 > 0 ⇒ x > 3
and for x + 1 > 0 ⇒ x > -1
For x - 3 < 0 ⇒ x < 3
and for x + 1 < 0 ⇒  x < -1
(x - 3) ( x+ 1) > 0 for x < -1

Function is increasing for x ∈ (3, ∞) 
or for x ∈ ( -∞, -1)

Concept: Maxima and Minima
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×