Advertisement Remove all ads

Find the Value of λ, So that the Lines 1 − X 3 = 7 Y − 14 λ = Z − 3 2 and 7 − 7 X 3 λ = Y − 5 1 = 6 − Z 5 Are at Right Angles. Also, Find Whether the Lines Are Intersecting Or Not. - Mathematics

Sum

Find the value of λ, so that the lines `(1-"x")/(3) = (7"y" -14)/(λ) = (z -3)/(2) and (7 -7"x")/(3λ) = ("y" - 5)/(1) = (6 -z)/(5)` are at right angles. Also, find whether the lines are intersecting or not.

Advertisement Remove all ads

Solution

Given lines are `(1-x)/(3) = (7y -14)/(λ) = (z -3)/(2) and (7 -7x)/(3λ) = (y - 5)/(1) = (6 -z)/(5)` 

Converting them into standard form, we have  `(x - 1)/(-3) = ("y" - 2)/((λ/7)) = (z - 3)/(2) and (x-1)/((-3λ/7)) = (y - 5)/(1) = (z -6)/(-5)`

Corresponding d.r.'s are `(-3, λ/7, 2) and  ((-3λ)/7, 1, -5)`

Since the angle between the lines is right angle so, cos 90° = `|((-3) ((-3λ)/7) + (λ/7) (1) + (2) (-5))/(sqrt((-3)^2 + (λ/7)^2 + 2^2) sqrt(((-3λ)/7)^2+ 1^2 + (-5)^2)))|`

⇒ 0 = `|(9λ/7 + λ/7 - 10)/(sqrt(λ^2/49 + 13) sqrt((9λ^2)/49 + 26)) |`

Squaring and cross-multiplying
⇒ `(10λ/7 - 10)^2 = 0`
⇒ `(10λ)/(7) = 10`
⇒ λ = 7.

Substituting the value λ, of  the lines are ` (x - 1)/(-3) = (y - 2)/(1) = (z - 3)/(2)` = a (let) and `(x-1)/(-3) = (y - 5)/(1) = (z -6)/(-5)` = b (let)

From first equation, `(x, y, z) = ( -3a + 1 ,a + 2, 2a+ 3) and "from second equation", (x, y, z) = (-3b + 1, b + 5, -5b + 6)`

Equating the corresponding values of coordinates, we have 
- 3a + 1 = - 3b + 1, a + 2 = b + 5 and 2a + 3 = -5b + 6

Or, - 3a + 3b = 0, a - b = 3 and 2a + 5b = 3

Solving the second and third equations of the above, we get a `= (18)/(7)` and b` = (-3)/(7)` 

Substituting these values of a and b in the first one

`-3 (18/7) + 3 (-3)/(7) = -9`

Thus, it is clear that the first equation is not satisfied so the lines are not intersecting.

  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×