Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find the value of n, if the sum to n terms of the series `sqrt(3) + sqrt(75) + sqrt(243) + ......` is `435 sqrt(3)`
Advertisement Remove all ads
Solution
t1 = `sqrt(3)`
t2 = `sqrt(75)`
= `sqrt(25 xx 3)`
= `5sqrt(3)`
t3 = `sqrt(243)`
= `sqrt(81 xx 3)`
= `9sqrt(3)`
Here t1 = `sqrt(3)`
t2 = `5sqrt(3)`
t3 = `9sqrt(3)`
(i.e) a = `sqrt(3)`
d = `5sqrt(3) - sqrt(3)`
= `4sqrt(3)`
Sn = `"n"/2[2"a" + ("n" - 1)"d"]`
= `435 sqrt(3)` ......(Given)
⇒ `"n"/2 [2sqrt(3) + ("n" - 1)4sqrt(3)] = 435sqrt(3)`
⇒ `("n" sqrt(3))/2 [2 + 4"n" - 4] = 435 sqrt(3)`
⇒ n[4n – 2] = 870
4n2 – 2n – 870 = 0
(÷ by 2)2n2 – n – 435 = 0
2n2 – 30n + 29n – 435 = 0
⇒ 2n(n – 15) + 29(n – 15) = 0
(2n + 29)(n – 15) = 0
⇒ n = `(-29)/2` or 15
n = `(-29)/2` not possible,
So n = 15
Concept: Finite Series
Is there an error in this question or solution?