Sum
Find the value of (1.02)6, correct upto four places of decimal
Advertisement Remove all ads
Solution
(1.02)6 = (1 + 0.02)6
= 6C0(1)6(0.02)0 + 6C1(1)5(0.02)1 + 6C2(1)4(0.02)2 + 6C3(1)3(0.02)3 + 6C4(1)2(0.02)4 + 6C5(1)1(0.02)5 + 6C6(1)0(0.02)6
Since, 6C0 = 6C6 = 1, 6C1 = 6C5 = 6,
6C2 = 6C4 = `(6 xx 5)/(2 xx 1)` = 15, 6C3 = `(6 xx 5 xx 4)/(3 xx 2 xx 1)` = 20
∴ (1.02)6 = 1(1)(1) + 6(1)(0.02) + 15(1)(0.0004) + 20(1)(0.000008) + ……
= 1 + 0.12 + 0.0060 + 0.000160 + ……
= 1.12616
= 1.1262, correct upto 4 decimal places.
Concept: Binomial Theorem for Positive Integral Index
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads