Find the term independent of x in the expansion of (3x-2x2)15 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Find the term independent of x in the expansion of `(3x - 2/x^2)^15`

Advertisement Remove all ads

Solution

Given expression is `(3x - 2/x^2)^15`

General term `"T"_(r + 1) = ""^n"C"_r x^(n - r) y^r`

= `""^15"C"_r (3x)^(15 - r) (- 2/x^2)^r`

= `""^15"C"_r (3)^(15 - r) * x^(15 - r) (-2)^r * 1/x^(2r)`

= `""^15"C"_r (3)^(15 - r) * x^(15 - r - 2r) * (-2)^r`

= `""^15"C"_r (3)^(15 - r) * x^(15 - 3r) (-2)^r`

For getting a term independent of x

Put 15 – 3r = 0

⇒ r = 5

∴ The required term is `""^15"C"_5 (3)^(15 - 5) (-2)^5`

= `- ""^15"C"_3 (3)^10 (2)^5`

= `-(15 xx 14 xx 13 xx 12 xx 11)/(5 xx 4 xx 3 xx 2 xx 1) * (3)^10 (2)^5`

= `-7 xx 13 xx 3 xx 11 * 3(3)^10  (2)^5`

= – 3003 (3)10 (2)5

Hence, the required term = –3003 (3)10 (2)5

Concept: General and Middle Terms
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Exercise [Page 142]

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 8 Binomial Theorem
Exercise | Q 4 | Page 142

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×