Sum
Find the sum to n terms: 0.7 + 0.77 + 0.777 + ...
Advertisement Remove all ads
Solution
Sn = 0.7 + 0.77 + 0.777 + … upto n terms
= 7(0.1 + 0.11 + 0.111+ …. upto n terms)
= `7/9` (0.9 + 0.99 + 0.999 + … upto n terms)
= `7/9`[(1 – 0.1) + (1 – 0.01) + (1 – 0.001) + ... upto n terms]
= `7/9`[(1 + 1 + 1 ...n times) – (0.01 + 0.01 + 0.001 + ... upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P.
with a = 0.1, r = `0.01/0.1` = 0.01
∴ Sn = `7/9{"n" - 0.1[(1 - (0.1)^"n")/(1 - 0.1)]}`
∴ Sn = `7/9{"n" - 0.1/0.9[1 - (0.1)^"n"]}`
∴ Sn = `7/9["n" - 1/9[1 - (0.1)^"n"]]`
∴ Sn = `7/81{9"n" - (1 - 1/(10^"n"))}`
Concept: Sum of the First n Terms of a G.P.
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads