Sum
Find the sum to n terms 0.4 + 0.44 + 0.444 + ...
Advertisement Remove all ads
Solution
Sn = 0.4 + 0.44 + 0.444 + … upto n terms
= 4(0.1 + 0.11 + 0.111 + …. upto n terms)
= `4/9` (0.9 + 0.99 + 0.999 + ... upto n terms)
= `4/9` [(1 − 0.1) + (1 − 0.01) + (1 − 0.001) ... upto n terms]
= `4/9` [(1 + 1 + 1 ... n times) − (0.1 + 0.01 + 0.001 + ... upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P.
with a = 0.1, r = `0.01/0.1` = 0.1
∴ Sn = `4/9{"n" - 0.1[(1 - (0.1)^"n")/(1 - 0.1)]}`
∴ Sn = `4/9 {"n" - 0.1/0.9 [1 - (0.1)^"n"]}`
∴ Sn = `4/9 ["n" - 1/9 (1 - (0.1)^"n")]`
∴ Sn = `4/81 {9"n" - (1 - 1/10^"n")}`
Concept: Arithmetico Geometric Series
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads