Find the sum of those integers from 1 to 500 which are multiples of 2 or 5.
Solution
Since, multiples of 2 or 5 = Multiples of 2 + Multiples of 5 – [Multiples of LCM (2,5) i.e., 10],
∴ Multiples of 2 or 5 from 1 to 500
= List of multiples of 2 from 1 to 500 + List of multiples of 5 from 1 to 500 – List of multiples of 10 from 1 to 500
= (2, 4, 6,…, 500) + (5, 10,15,…, 500) – (10, 20,…, 500) .......(i)
All of these list form an AP.
Now, number of terms in first list,
500 = 2 + (n1 – 1)2
⇒ 498 = (n1 – 1)2 .......[∵ a1 = a + (n – 1)d]
⇒ n1 – 1 = 249
⇒ n1 = 250
Number of terms in second list,
500 = 5 + (n2 – 1)5
⇒ 495 = (n2 – 1)5 ......[∵ l = 500]
⇒ 99 = (n2 – 1)
⇒ n2 = 100
And number of terms in third list,
500 = 10 + (n3 – 1)10
⇒ 490 = (n3 – 1)10
⇒ n3 – 1 = 49
⇒ n3 = 50
From Eq(i) Sum of multiples of 2 or 5 from 1 to 500
= Sum of (2, 4, 6, …500) + Sum of (5,10,…, 500) – Sum of (10, 20, …, 500)
= `n_1/2[2 + 500] + n_2/2 [5 + 500] - n_3/2[10 + 500]` .....`[because S_n = n/2(a + 1)]`
= `(250/2 xx 502) + (100/2 xx 505) - (50/2 xx 510)`
= (250 × 251) + (505 × 50) – (25 × 510)
= 62750 + 25250 – 12750
= 88000 – 12750
= 75250