Find the sum of the first 20-terms of the arithmetic progression having the sum of first 10 terms as 52 and the sum of the first 15 terms as 77
Solution
Sum of the first n terms of an Arithmetic progression is Sn = [2a + (n – 1)d]
Given S10 = 52
52 = `10/2`[ 2a + (10 – 1)d]
52 = 5[2a + 9d]
52 = 10a + 45d ......(1)
Also given S15 = 77
77 = 152[2a + (15 – 1)d]
77 = 152[2a + 14d]
77 = 15[a + 7d]
77 = 15a + 105d .......(2)
(1) × 15 ⇒ 780 = 150a + 675d
(2) × 10 ⇒ 770 = 150a + 1050d
10 = 0 – 375d
d = `10/(- 375)`
= `- 2/75`
Substituting the value of d in (1)
52 = `10"a" + 45(- 2/75)`
52 = `10"a" - 6/5`
10a = `52 + 6/5`
= `(260 + 6)/5`
= `266/5`
a = `266/(5 xx 10)`
= `133/25`
S20 = `20/2[2 xx 133/25 + 19 xx (-2)/75]`
= `10[266/25 - 18/75]`
= `10[(798- 38)/75]`
= `10[760/75]`
S20 = `2 xx 760/15`
= `2 xx 152/3`
= `304/3`