Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find the sum: `(a - b)/(a + b) + (3a - 2b)/(a + b) + (5a - 3b)/(a + b) +` .... to 11 terms.
Advertisement Remove all ads
Solution
Here, first term (A) = `(a - b)/(a + b)`
And common difference,
D = `(3a - 2b)/(a + b) - (a - b)/(a + b) = (2a - b)/(a + b)`
∵ Sum of n terms of an AP,
`S_n = n/2[2A + (n - 1)D]`
⇒ `S_n = n/2{2((a - b))/((a + b)) + (n - 1) ((2a - b))/((a + b))}`
= `n/2{(2a - 2b + 2an - 2a - bn + b)/(a + b)}`
= `n/2((2an - bn - b)/(a + b))`
∴ `S_11 = 11/2{(2a(11) - b(11) - b)/(a + b)}`
= `11/2((22a - 12b)/(a + b))`
= `(11(11a - 6b))/(a + b)`
Concept: Sum of First n Terms of an A.P.
Is there an error in this question or solution?