Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
Find the sum: `4 - 1/n + 4 - 2/n + 4 - 3/n + ...` upto n terms
Advertisement Remove all ads
Solution
Here, first term, `a = 4 - 1/n`
Common difference,
`d = (4 - 2/n) - (4 - 1/n)`
= `(-2)/n + 1/n`
= `(-1)/n`
∵ Sum of n terms of an AP,
`S_n = n/2[2a + (n - 1)d]`
⇒ `S_n = n/2[2(4 - 1/n) + (n - 1)((-1)/n)]`
= `n/2 {8 - 2/n - 1 + 1/n}`
= `n/2(7 - 1/n)`
= `n/2 xx ((7n - 1)/n)`
= `(7n - 1)/2`
Concept: Sum of First n Terms of an A.P.
Is there an error in this question or solution?