Sum
Find the square root of the following complex number:
`3 + 2sqrt(10)"i"`
Advertisement Remove all ads
Solution
Let `sqrt(3 + 2sqrt(10)"i")` = a + bi, where a, b ∈ R
Squaring on both sides, we get
`3 + 2sqrt(10)"i"` = a2 + b2i2 + 2abi
∴ `3 + 2sqrt(10)"i"` = (a2 – b2) + 2abi ...[∵ i2 = – 1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = `2sqrt(10)`
∴ a2 – b2 = 3 and b = `(sqrt(10))/"a"`
∴ `"a"^2 - ((sqrt(10))/"a")^2` = 3
∴ `"a"^2 - 10/"a"^2` = 3
∴ a4 – 10 = 3a2
∴ a4 – 3a2 – 10 = 0
∴ (a2 – 5)(a2 + 2) = 0
∴ a2 = 5 or a2 = – 2
But a ∈ R
∴ a2 ≠ – 2
∴ a2 = 5
∴ a = `±sqrt(5)`
When a = `sqrt(5)`, b = `(sqrt(10))/sqrt(5) = sqrt(2)`
When a = `-sqrt(5)`, b = `(sqrt(10))/(-5) = -sqrt(2)`
∴ `sqrt(3 + 2sqrt(10)"i") = ± (sqrt(5) + sqrt(2)"i")`
Concept: Square Root of a Complex Number
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads