###### Advertisements

###### Advertisements

Find the radius of the circle

Diameter = 30 cm

###### Advertisements

#### Solution

Diameter = 30 cm

Radius = `"diameter"/2`

= `30/2`

= 15 cm

#### APPEARS IN

#### RELATED QUESTIONS

In Fig. 8, O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects circle at E. If AB is a tangent to the circle at E, find the length of AB, where TP and TQ are two tangents to the circle.

n Fig. 2, PQ and PR are two tangents to a circle with centre O. If ∠QPR = 46°, then ∠QOR equals:

(A) 67°

(B) 134°

(C) 44°

(D) 46°

In the given figure, PQ is a chord of length 8cm of a circle of radius 5cm. The tangents at P and Q intersect at a point T. Find the length TP

Prove that there is one and only one tangent at any point on the circumference of a circle.

A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12cm. Find the radius of the circle.

Write True or False. Give reasons for your answers.

A chord of a circle, which is twice as long as its radius, is a diameter of the circle.

From a point P, two tangents PA and PB are drawn to a circle with center O. If OP =

diameter of the circle shows that ΔAPB is equilateral.

Two circles touch externally at a point P. from a point T on the tangent at P, tangents TQ and TR are drawn to the circles with points of contact Q and E respectively. Prove that TQ = TR.

In fig. there are two concentric circles with Centre O of radii 5cm and 3cm. From an

external point P, tangents PA and PB are drawn to these circles if AP = 12cm, find the

tangent length of BP.

In fig common tangents PQ and RS to two circles intersect at A. Prove that PQ = RS.

Fill in the blank

Circles having the same centre and different radii are called ...........................circles.

ture or false v

The degree measure of a semi-circle is 180°.

In the given figure ABC is an isosceles triangle and O is the centre of its circumcircle. Prove that AP bisects angle BPC .

In the given figure, AB is a side of a regular six-sided polygon and AC is a side of a regular eight sided polygon inscribed in the circle with centre O. Calculate the sizes of:

(i) ∠AOB, (ii) ∠ACB (iii) ∠ABC

In the following figure, AB is the diameter of a circle with centre O and CD is the chord with length equal to radius OA.

Is AC produced and BD produced meet at point P; show that ∠APB = 60°

A quadrilateral is drawn to circumscribe a circle. Prove that the sums of opposite sides are equal ?

If the difference between the circumference and the radius of a circle is 37 cm, then using`22/7`, the circumference (in cm) of the circle is:

The circumference of a circle is 22 cm. The area of its quadrant (in cm^{2}) is

In the given figure, Δ*ABC* is an equilateral triangle. Find *m*∠*BEC*.

In the given figure, *AB* and *CD* are diameters of a circle with centre *O*. If ∠*OBD* = 50°, find ∠*AOC*.

In the given figure, chords *AD* and *BC* intersect each other at right angles at a point P. If ∠*DAB* = 35°, then

In the given figure, *O* is the centre of the circle and ∠*BDC* = 42°. The measure of ∠*ACB* is

In the given figure, a ∆ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 8 cm and 6 cm respectively. Find the lengths of sides AB and AC, when area of ∆ABC is 84 cm^{2}.

In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.

Choose correct alternative answer and fill in the blank.

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.

The point of concurrence of all angle bisectors of a triangle is called the ______.

The circle which passes through all the vertices of a triangle is called ______.

Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.

The length of the longest chord of the circle with radius 2.9 cm is ______.

Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.

The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.

If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.

Find the area of a circle of radius 7 cm.

In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof.

In the given figure, seg MN is a chord of a circle with centre O. MN = 25, L is a point on chord MN such that ML = 9 and d(O,L) = 5. Find the radius of the circle.

**The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,**

find the radius of the circle.

**In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.**

Prove that:

( i ) ΔOPA ≅ ΔOQC

( ii ) ΔBPC ≅ ΔBQA

**Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?**

**Suppose you are given a circle. Describe a method by which you can find the center of this circle.**

In the given circle with diameter AB, find the value of x.

In the given figure, the area enclosed between the two concentric circles is 770 cm^{2}. If the radius of the outer circle is 21 cm, calculate the radius of the inner circle.

In Fig., chords AB and CD of the circle intersect at O. AO = 5 cm, BO = 3 cm and CO = 2.5 cm. Determine the length of DO.

If O is the centre of the circle, find the value of x in each of the following figures

ABC is a triangle with AB = 10 cm, BC = 8 cm and AC = 6 cm (not drawn to scale). Three circles are drawn touching each other with the vertices as their centres. Find the radii of the three circles.

**Use the figure given below to fill in the blank:**

______ is a chord of the circle.

**Use the figure given below to fill in the blank:**

________ is a radius of the circle.

**Use the figure given below to fill in the blank:**

If the length of RS is 5 cm, the length of PQ = _______

Draw a circle of radius of 4.2 cm. Mark its center as O. Takes a point A on the circumference of the circle. Join AO and extend it till it meets point B on the circumference of the circle,

(i) Measure the length of AB.

(ii) Assign a special name to AB.

Draw circle with diameter: 6 cm

In above case, measure the length of the radius of the circle drawn.

Draw circle with diameter: 8.4 cm

In above case, measure the length of the radius of the circle drawn.

Mark two points A and B ,4cm a part, Draw a circle passing through B and with A as a center

Construct a triangle PQR with QR = 5.5 cm, ∠Q = 60° and angle R = 45°. Construct the circumcircle cif the triangle PQR.

The diameter of a circle is 12.6 cm. State, the length of its radius.

**State, if the following statement is true or false:**

The diameters of a circle always pass through the same point in the circle.

If the radius of a circle is 5 cm, what will its diameter be?

**Draw circle with the radii given below.**

2 cm

**Draw circle with the radii given below.**

3 cm

**Draw a circle with the radii given below.**

4 cm

Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.

In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram |
Points in the interior of the circle |
Points in the exterior of the circle |
Points on the circle |

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre

The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle

Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA

A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord

In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?

Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord

A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is

In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is

AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is

The ratio between the circumference and diameter of any circle is _______

A line segment which joins any two points on a circle is a ___________

The longest chord of a circle is __________

The radius of a circle of diameter 24 cm is _______

A part of circumference of a circle is called as _______

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

15 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

1760 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

24 m |

All the radii of a circle are _______________

The ______________ is the longest chord of a circle

A line segment joining any point on the circle to its center is called the _____________ of the circle

A line segment with its end points on the circle is called a ______________

Twice the radius is ________________

Find the diameter of the circle

Radius = 10 cm

Find the diameter of the circle

Radius = 8 cm

Find the diameter of the circle

Radius = 6 cm

Find the radius of the circle

Diameter = 24 cm

Find the radius of the circle

Diameter = 76 cm

In figure, chords AC and DE intersect at B. If ∠ABE = 108°, m(arc AE) = 95°, find m(arc DC).

In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS)

(iii) m(arc QSR)

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°

**Given:** A circle inscribed in a right angled ΔABC. If ∠ACB = 90° and the radius of the circle is r.

**To prove:** 2r = a + b – c

In a circle with centre P, chord AB is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If AB = `16sqrt(3)`, then find the radius of the circle

In the figure, O is the centre of the circle, and ∠AOB = 90°, ∠ABC = 30°. Then find ∠CAB.

In the figure, a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O. If AD⊥ DC and BC = 38, QB = 27, DC = 25, then find the radius of the circle.

Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.

In the given figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. Then the radius of the circle is ______

If d_{1}, d_{2} (d_{2} > d_{1}) be the diameters of two concentric circles and c be the length of a chord of a circle which is tangent to the other circle, then ______

Three circles touch each other externally. The distance between their centres is 5 cm, 6 cm, and 7 cm. Find the radii of the circles.

If a hexagon ABCDEF circumscribe a circle, prove that AB + CD + EF = BC + DE + FA.

In figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find the ∠RQS.

[**Hint:** Draw a line through Q and perpendicular to QP.]

In figure, if AOB is a diameter of the circle and AC = BC, then ∠CAB is equal to ______.

In figure, ∠ADC = 130° and chord BC = chord BE. Find ∠CBE.

A quadrilateral ABCD is inscribed in a circle such that AB is a diameter and ∠ADC = 130º. Find ∠BAC.

Draw two acute angles and one obtuse angle without using a protractor. Estimate the measures of the angles. Measure them with the help of a protractor and see how much accurate is your estimate

In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.

In the given figure, O is the centre of the circle. Shade the smaller segment of the circle formed by CP.

From the figure, identify the centre of the circle.

From the figure, identify three radii.

From the figure, identify a point in the exterior.

From the figure, identify a sector.

From the figure, identify a segment.

Is every diameter of a circle also a chord?

Is every chord of a circle also a diameter?

A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.

A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.

If radius of a circle is 5 cm, then find the length of longest chord of a circle.

AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

- Draw the figure using the given information.
- Find the measures of ∠CAT and ∠ABC with reasons.
- Whether ∠CAT and ∠ABC are congruent? Justify your answer.

The circumcentre of a triangle is the point which is ______.