Maharashtra State BoardSSC (English Medium) 7th Standard

Find the Pythagorean Triplet from Among the Following Set of Numbers. 9, 40, 41 - Mathematics

Advertisements
Advertisements
Sum

Find the Pythagorean triplet from among the following set of numbers.

9, 40, 41

Advertisements

Solution

It is known that, if in a triplet of natural numbers, the square of the biggest number is equal to the sum of the squares of the other two numbers, then the three numbers form a Pythagorean triplet.

The given set of numbers is (9, 40, 41).
The biggest number among the given set is 41.
92 = 81; 402 = 1600; 412 = 1681
Now, 81 + 1600 = 1681
∴ 92 + 402 = 412
Thus, (9, 40, 41) forms a Pythagorean triplet.

  Is there an error in this question or solution?
Chapter 13: Pythagoras’ Theorem - Practice Set 49 [Page 90]

APPEARS IN

Balbharati Mathematics 7th Standard Maharashtra State Board
Chapter 13 Pythagoras’ Theorem
Practice Set 49 | Q 1.5 | Page 90

RELATED QUESTIONS

In triangle ABC, ∠C=90°. Let BC= a, CA= b, AB= c and let 'p' be the length of the perpendicular from 'C' on AB, prove that:

1. cp = ab

2. `1/p^2=1/a^2+1/b^2`


In a right triangle ABC, right-angled at B, BC = 12 cm and AB = 5 cm. The radius of the circle inscribed in the triangle (in cm) is
(A) 4
(B) 3
(C) 2
(D) 1


Two towers of heights 10 m and 30 m stand on a plane ground. If the distance between their feet is 15 m, find the distance between their tops


An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be the two planes after `1 1/2` hours?


D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE+ BD2 = AB2 + DE2


The perpendicular from A on side BC of a Δ ABC intersects BC at D such that DB = 3CD . Prove that 2AB2 = 2AC2 + BC2.


Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, ho much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?


Which of the following can be the sides of a right triangle?

2 cm, 2 cm, 5 cm

In the case of right-angled triangles, identify the right angles.


The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.


The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is

(A)\[7 + \sqrt{5}\]
(B) 5
(C) 10
(D) 12


Identify, with reason, if the following is a Pythagorean triplet.
(5, 12, 13)


Identify, with reason, if the following is a Pythagorean triplet.
(24, 70, 74)


Identify, with reason, if the following is a Pythagorean triplet.
(11, 60, 61)


Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.


Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was \[15\sqrt{2}\]

 km. Find their speed per hour.

 


In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:
4(BL+ CM2) = 5 BC2


In ∆ABC, seg AD ⊥ seg BC, DB = 3CD.

Prove that: 2AB= 2AC+ BC2


In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex opposite the base and the centroid.


In a trapezium ABCD, seg AB || seg DC seg BD ⊥ seg AD, seg AC ⊥ seg BC, If AD = 15, BC = 15 and AB = 25. Find A(▢ABCD)


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


ABC is a triangle, right-angled at B. M is a point on BC.
Prove that: AM2 + BC2 = AC2 + BM2.


In a rectangle ABCD,
prove that: AC2 + BD2 = AB2 + BC2 + CD2 + DA2.


If the angles of a triangle are 30°, 60°, and 90°, then shown that the side opposite to 30° is half of the hypotenuse, and the side opposite to 60° is `sqrt(3)/2` times of the hypotenuse.


Choose the correct alternative: 

In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure of ∠P? 


Find the length of diagonal of the square whose side is 8 cm.


Triangle ABC is right-angled at vertex A. Calculate the length of BC, if AB = 18 cm and AC = 24 cm.


Triangle XYZ is right-angled at vertex Z. Calculate the length of YZ, if XY = 13 cm and XZ = 12 cm.


The sides of a certain triangle is given below. Find, which of them is right-triangle

6 m, 9 m, and 13 m


In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:
(i) CP
(ii) PD
(iii) CD


In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm


In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm


Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm


In the given figure, angle ADB = 90°, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.


A ladder, 6.5 m long, rests against a vertical wall. If the foot of the ladder is 2.5 m from the foot of the wall, find up to how much height does the ladder reach?


A boy first goes 5 m due north and then 12 m due east. Find the distance between the initial and the final position of the boy.


In the figure below, find the value of 'x'.


In the figure below, find the value of 'x'.


The top of a ladder of length 15 m reaches a window 9 m above the ground. What is the distance between the base of the wall and that of the ladder?


Find the Pythagorean triplet from among the following set of numbers.

2, 4, 5


Find the Pythagorean triplet from among the following set of numbers.

4, 5, 6


Find the Pythagorean triplet from among the following set of numbers.

2, 6, 7


The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 12, 15


The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 60, 61


The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7


From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.


Find the length of the hypotenuse of a triangle whose other two sides are 24cm and 7cm.


Calculate the area of a right-angled triangle whose hypotenuse is 65cm and one side is 16cm.


A ladder 15m long reaches a window which is 9m above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to other side of the street to reach a window 12m high. Find the width of the street.


The length of the diagonals of rhombus are 24cm and 10cm. Find each side of the rhombus.


Each side of rhombus is 10cm. If one of its diagonals is 16cm, find the length of the other diagonals.


From a point O in the interior of aΔABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that: AF2 + BD2 + CE= OA2 + OB2 + OC2 - OD2 - OE2 - OF2


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2AD2 + `(1)/(2)"BC"^2`


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2(AD2 + CD2)


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that : 9(AQ2 + BP2) = 13AB2 


In the given figure, PQ = `"RS"/(3)` = 8cm, 3ST = 4QT = 48cm.
SHow that ∠RTP = 90°.


In a right-angled triangle ABC,ABC = 90°, AC = 10 cm, BC = 6 cm and BC produced to D such CD = 9 cm. Find the length of AD.


In the given figure. PQ = PS, P =R = 90°. RS = 20 cm and QR = 21 cm. Find the length of PQ correct to two decimal places.


PQR is an isosceles triangle with PQ = PR = 10 cm and QR = 12 cm. Find the length of the perpendicular from P to QR.


A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?


There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?


To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?


The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ2 = 2PR2 + QR2 


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?


If in a ΔPQR, PR2 = PQ2 + QR2, then the right angle of ∆PQR is at the vertex ________


In a right angled triangle, the hypotenuse is the greatest side


Find the unknown side in the following triangles


Find the unknown side in the following triangles


Find the unknown side in the following triangles


An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height


Find the distance between the helicopter and the ship


In triangle ABC, line I, is a perpendicular bisector of BC.
If BC = 12 cm, SM = 8 cm, find CS


Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason


In the figure, find AR


Choose the correct alternative:

If length of sides of a triangle are a, b, c and a2 + b2 = c2, then which type of triangle it is?


In a right angled triangle, if length of hypotenuse is 25 cm and height is 7 cm, then what is the length of its base?


In a quadrilateral ABCD, ∠A + ∠D = 90°. Prove that AC2 + BD2 = AD2 + BC2 

[Hint: Produce AB and DC to meet at E.]


Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.


In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:

(i) `"AC"^2 = "AD"^2 + "BC"."DM" + (("BC")/2)^2`

(ii) `"AB"^2 = "AD"^2 - "BC"."DM" + (("BC")/2)^2`

(iii) `"AC"^2 + "AB"^2 = 2"AD"^2 + 1/2"BC"^2`


In an equilateral triangle PQR, prove that PS2 = 3(QS)2.


Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is ______.


Two angles are said to be ______, if they have equal measures.


Two rectangles are congruent, if they have same ______ and ______.


If the areas of two circles are the same, they are congruent.


If two legs of a right triangle are equal to two legs of another right triangle, then the right triangles are congruent.


Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?


Points A and B are on the opposite edges of a pond as shown in figure. To find the distance between the two points, the surveyor makes a right-angled triangle as shown. Find the distance AB.


The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its top reach?


Share
Notifications



      Forgot password?
Use app×