Maharashtra State BoardSSC (English Medium) 7th Standard

Find the Pythagorean Triplet from Among the Following Set of Numbers. 2, 6, 7 - Mathematics

Advertisements
Advertisements
Sum

Find the Pythagorean triplet from among the following set of numbers.

2, 6, 7

Advertisements

Solution

It is known that, if in a triplet of natural numbers, the square of the biggest number is equal to the sum of the squares of the other two numbers, then the three numbers form a Pythagorean triplet.

The given set of numbers is (2, 6, 7).
The biggest number among the given set is 7.
72 = 49; 62 = 36; 22 = 4
Now, 4 + 36 = 40 ≠ 49
∴ 22 + 62 ≠ 72
Thus, (2, 6, 7) does not form a Pythagorean triplet.

  Is there an error in this question or solution?
Chapter 13: Pythagoras’ Theorem - Practice Set 49 [Page 90]

APPEARS IN

Balbharati Mathematics 7th Standard Maharashtra State Board
Chapter 13 Pythagoras’ Theorem
Practice Set 49 | Q 1.4 | Page 90

RELATED QUESTIONS

If the sides of a triangle are 6 cm, 8 cm and 10 cm, respectively, then determine whether the triangle is a right angle triangle or not.


Prove that the diagonals of a rectangle ABCD, with vertices A(2, -1), B(5, -1), C(5, 6) and D(2, 6), are equal and bisect each other.


P and Q are the mid-points of the sides CA and CB respectively of a ∆ABC, right angled at C. Prove that:

`(i) 4AQ^2 = 4AC^2 + BC^2`

`(ii) 4BP^2 = 4BC^2 + AC^2`

`(iii) (4AQ^2 + BP^2 ) = 5AB^2`


Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals


A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?


An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be the two planes after `1 1/2` hours?


D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE+ BD2 = AB2 + DE2


In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.


PQR is a triangle right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.


A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.


Which of the following can be the sides of a right triangle?

1.5 cm, 2 cm, 2.5 cm

In the case of right-angled triangles, identify the right angles.


The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.


Prove that, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides


Find the side and perimeter of a square whose diagonal is 10 cm ?


Find the length diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.


Walls of two buildings on either side of a street are parellel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street , its top touches the window of the other building at a height 4.2 m. Find the width of the street.


In ∆PQR, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.


In ∆ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.


Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.


Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was \[15\sqrt{2}\]

 km. Find their speed per hour.

 


In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:
4(BL+ CM2) = 5 BC2


In ∆ABC, seg AD ⊥ seg BC, DB = 3CD.

Prove that: 2AB= 2AC+ BC2


In a trapezium ABCD, seg AB || seg DC seg BD ⊥ seg AD, seg AC ⊥ seg BC, If AD = 15, BC = 15 and AB = 25. Find A(▢ABCD)


A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.


A man goes 40 m due north and then 50 m due west. Find his distance from the starting point.


In the given figure, ∠B = 90°, XY || BC, AB = 12 cm, AY = 8cm and AX : XB = 1 : 2 = AY : YC.

Find the lengths of AC and BC.


Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m;
find the distance between their tips.


In triangle ABC, AB = AC and BD is perpendicular to AC.
Prove that: BD2 - CD2 = 2CD × AD.


O is any point inside a rectangle ABCD.
Prove that: OB2 + OD2 = OC2 + OA2.


Choose the correct alternative: 

In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure of ∠P? 


Find the length of diagonal of the square whose side is 8 cm.


Find the side of the square whose diagonal is `16sqrt(2)` cm.


In ∆ ABC, AD ⊥ BC.
Prove that  AC2 = AB2 +BC2 − 2BC x BD


Triangle XYZ is right-angled at vertex Z. Calculate the length of YZ, if XY = 13 cm and XZ = 12 cm.


Triangle PQR is right-angled at vertex R. Calculate the length of PR, if: PQ = 34 cm and QR = 33.6 cm.


The sides of a certain triangle is given below. Find, which of them is right-triangle

16 cm, 20 cm, and 12 cm


In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:
(i) CP
(ii) PD
(iii) CD


In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm


Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm


In the given figure, angle ACB = 90° = angle ACD. If AB = 10 m, BC = 6 cm and AD = 17 cm, find :
(i) AC
(ii) CD


In the given figure, angle ADB = 90°, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.


A ladder, 6.5 m long, rests against a vertical wall. If the foot of the ladder is 2.5 m from the foot of the wall, find up to how much height does the ladder reach?


Use the information given in the figure to find the length AD.


In the figure below, find the value of 'x'.


In the figure below, find the value of 'x'.


In the figure below, find the value of 'x'.


Find the Pythagorean triplets from among the following set of numbers.

3, 4, 5


Find the Pythagorean triplet from among the following set of numbers.

2, 4, 5


Find the Pythagorean triplet from among the following set of numbers.

4, 7, 8


The sides of the triangle are given below. Find out which one is the right-angled triangle?

8, 15, 17


The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 60, 61


The sides of the triangle are given below. Find out which one is the right-angled triangle?

40, 20, 30


From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.


A man goes 10 m due east and then 24 m due north. Find the distance from the straight point.


A right triangle has hypotenuse p cm and one side q cm. If p - q = 1, find the length of third side of the triangle.


Two poles of height 9m and 14m stand on a plane ground. If the distance between their 12m, find the distance between their tops.


From a point O in the interior of aΔABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that: AF2 + BD2 + CE= OA2 + OB2 + OC2 - OD2 - OE2 - OF2


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AC2 = AD2 + BC x DE + `(1)/(4)"BC"^2`


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AC2 - AB2 = 2BC x ED


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2(AD2 + CD2)


A point OI in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Prove that  OB2 + OD2 = OC2 + OA2


AD is perpendicular to the side BC of an equilateral ΔABC. Prove that 4AD2 = 3AB2.


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9AQ2 = 9AC2 + 4BC2 


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9BP2 = 9BC2 + 4AC2


PQR is an isosceles triangle with PQ = PR = 10 cm and QR = 12 cm. Find the length of the perpendicular from P to QR.


In a square PQRS of side 5 cm, A, B, C and D are points on sides PQ, QR, RS and SP respectively such as PA = PD = RB = RC = 2 cm. Prove that ABCD is a rectangle. Also, find the area and perimeter of the rectangle.


Determine whether the triangle whose lengths of sides are 3 cm, 4 cm, 5 cm is a right-angled triangle.


A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?


There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?


To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?


The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ2 = 2PR2 + QR2 


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?


If in a ΔPQR, PR2 = PQ2 + QR2, then the right angle of ∆PQR is at the vertex ________


If ‘l‘ and ‘m’ are the legs and ‘n’ is the hypotenuse of a right angled triangle then, l2 = ________


In a right angled triangle, the hypotenuse is the greatest side


Find the unknown side in the following triangles


An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height


Find the distance between the helicopter and the ship


In triangle ABC, line I, is a perpendicular bisector of BC.
If BC = 12 cm, SM = 8 cm, find CS


The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________


Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason


In the figure, find AR


Choose the correct alternative:

If length of sides of a triangle are a, b, c and a2 + b2 = c2, then which type of triangle it is?


From the given figure, in ∆ABQ, if AQ = 8 cm, then AB =?


From given figure, In ∆ABC, If AC = 12 cm. then AB =?


Activity: From given figure, In ∆ABC, ∠ABC = 90°, ∠ACB = 30°

∴ ∠BAC = `square`

∴ ∆ABC is 30° – 60° – 90° triangle

∴ In ∆ABC by property of 30° – 60° – 90° triangle.

∴ AB = `1/2` AC and `square` = `sqrt(3)/2` AC

∴ `square` = `1/2 xx 12` and BC = `sqrt(3)/2 xx 12`

∴ `square` = 6 and BC = `6sqrt(3)`


Sides AB and BE of a right triangle, right-angled at B are of lengths 16 cm and 8 cm respectively. The length of the side of largest square FDGB that can be inscribed in the triangle ABE is ______.


A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.


In an equilateral triangle PQR, prove that PS2 = 3(QS)2.


In a right-angled triangle ABC, if angle B = 90°, then which of the following is true?


Two squares having same perimeter are congruent.


Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?


Points A and B are on the opposite edges of a pond as shown in figure. To find the distance between the two points, the surveyor makes a right-angled triangle as shown. Find the distance AB.


Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.


Share
Notifications



      Forgot password?
Use app×