Find the number of revolutions made by a circular wheel of area 1.54 m2 in rolling a distance of 176 m.
Solution
Let the number of revolutions made by a circular wheel be n and the radius of circular wheel be r.
Given that, area of circular wheel = 1.54 m2
⇒ `pir^2 = 1.54` .....[∵ Area of circular πr2]
⇒ `r^2 = 1.54/22 xx 7`
⇒ `r^2 = 0.49`
∴ r = 0.7 m
So, the radius of the wheel is 0.7 m
Distance travelled by a circular wheel in one revolution = Circumference of circular wheel
= `2 pir`
= `2 xx 22/7 xx 0.7`
= `22/5`
= 4.4 m ......[∵ Circumference of a circle = 2πr]
Since, distance travelled by a circular wheel = 176 m
∴ Number of revolutions = `"Total distance"/"Distance in one revolution"`
= `176/4.4`
= 40
Hence, the required number of revolutions made by a circular wheel is 40.